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Abstract

XML is emerging as one of the dominant data formats for data processing on the Internet. To query

XML data, query languages like XQL, Lorel, XML-QL, or XML-GL have been proposed. In this paper,

we study how XML data can be stored and queried using a standard relational database system. For this

purpose, we present alternative mapping schemes to store XML data in a relational database and discuss

how XML-QL queries can be translated into SQL queries for every mapping scheme. We present the

results of comprehensive performance experiments that analyze the tradeo�s of the alternative mapping

schemes in terms of database size, query performance and update performance. While our discussion

is focussed on XML and XML-QL, the results of this paper are relevant for most semi-structured data

models and most query languages for semi-structured data.

1 Introduction

It has become clear that not all applications are met by the relational, object-relational, or object-oriented

data models. Examples are applications that need to integrate data from several data sources or applications

for which the schema is not known at the time the data is generated[Bos99]. To support these kinds of

applications, semi-structured data models have been proposed [Abi97, Bun97, Suc98]. One common feature

of these data models is the lack of schema so that the data is self-describing. XML is emerging as a standard

to de�ne such semi-structured data. Also, to retrieve data from such semi-structured databases, special

semi-structured query languages have been proposed [QL'98]; examples are XQL [RLS98], Lorel [AQM+97],

XML-QL [DFF+99], or XML-GL [CCD+99]. Common features of these languages are the use of regular

path expressions and the ability to extract information about the schema from the data.

There are three possible approaches to store semi-structured data (i.e., XML documents) and to execute

queries on that data. One, build a special-purpose database system. Example research prototypes are Ru-

fus [SLS+93], Lore [MAG+97] and Strudel [FFK+98]; Lotus Notes is an example commercial product[Lot98].

Such a system is particularly tailored to store and retrieve XML data, using specially designed structures

and indices[MWA+98, Moh99] and particular query optimization techniques[FLS97, MW97]. To some ex-

tent SGML database systems [YIU96, SD96] or systems like GRAS [KSW95] which are designed to store

graphs fall into this category of special-purpose systems as well. Two, use an object-oriented database

system. In this approach, the rich data modeling capabilities of OODBMSs are exploited. This approach

has, for example, been studied in [CACS94] and implemented in commercial systems like O2 or Objectsore.

This approach is also pursued as part of the Monet project [vZAW99]. Three, use a (standard) relational

database system. In this approach, XML data is mapped into tables of a relational schema and queries posed
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in a semi-structured query language are translated into SQL queries. Apparently, Oracle and Microsoft are

currently building tools to facilitate this approach.

It is still unclear which of these three approaches is going to �nd wide-spread acceptance. In theory,

special-purpose systems should work best, but it is going to take a long time before such systems are mature

and scale well for large amounts of data. Likewise, the current generation of object-oriented database

systems is not yet mature enough to evaluate queries on very large databases. Relational database systems

are mature and scale very well, and they have the additional advantage that in a relational database XML

data and traditional (structured) data can co-exist making it possible to build applications that involve both

kinds of data with little extra e�ort. Relational databases, however, have been built to support traditional

(structured) data and the requirements of processing XML data are vastly di�erent from the requirements

to process such traditional data. To optimize the use of relational database systems for XML, recent work

has concentrated on models and algorithms to extract schema from XML documents or semi-structured data

in general; e.g., [BDFS97, NAM98, DFS]. The goal of that work is to analyze the semi-structured data

and (possibly) the query workload of the target application in order to �nd the best approximated schema.

This way the semi-structured data can be stored in the relational database with little o�cuts, and schema

extraction makes it also easier to formulate queries [GW97].

The purpose of this experience paper is to study the overall performance of relational databases to process

XML data. Rather than extracting schema, our goal is to study the general advantages and pitfalls of using

relational databases to store and manage XML data and to study the tradeo�s of fundamentally di�erent

schemes to store XML documents in relational databases. We describe �ve alternative mapping schemes

that can be used to store XML documents, show how queries and updates are processed for each of these

mapping schemes, and present the results of comprehensive performance experiments that analyze the space

requirements, the bulkloading times, the running times to reconstruct an XML document, and the running

times of a series of queries and update functions for each mapping scheme. The mapping schemes we study

are very simple and can be implemented in an ad-hoc way, but they can also be improved by using one of the

models to extract schema. Also, the results of our performance experiments can be used as input for such

models. In our experiments, we use a synthetic experimental database and synthetic benchmark queries and

update functions.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of XML and query

languages for XML. Section 3 describes alternative mapping schemes that can be used to store XML

documents in a relational database. Section 4 addresses query processing issues. Section 5 presents the

results of our performance evaluation. Section 6 contains conclusions and suggestions for future work.

2 Data Model and Query Language

2.1 XML

The Extensible Markup Language (XML) has been created by the World Wide Web Consortium (W3C)

as a simpli�ed subset of SGML specially designed for Web applications. The goal of XML is to enable the

delivery of self-describing data structures of arbitrary depth and complexity to applications that require such
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structures. XML retains the key SGML advantages of extensibility, structure, and validation in a language

that is designed to be vastly easier to learn, use, and implement than full SGML. XML di�ers from HTML in

three major respects: (a) information providers can de�ne new tag and attribute names at will, (b) document

structures can be nested to any level of complexity, and (c) any XML document can contain an optional

description of its grammar for use by applications that need to perform structural validation.

Structurally, each XML document consists of a set of elements, the boundaries of which are delimited

by start-tags and end-tags. Each element has a type, identi�ed by name, sometimes called its "generic

identi�er", and may have a set of attribute speci�cations. Each attribute speci�cation has a name and a

value. In addition, each element can have an arbitrary list of (nested) subelements. The example below

gives a avor of the XML language.

Example 2.1: Let's assume that a data source wants to export information (e.g. names, addresses and

hobbies) of the members of a family. A possible way of structuring this information and representing it in

XML is as follows. Each person has a unique identi�er id and an age attribute. Information about the

hobbies of a given person are provided as valued subelements. The child elements of Person 1 contain the

children of the family as subelements, while the child element of Person 2 only contains a pointer to its child.

hpersoni hid=1, age=55i
hnameiPeterh/namei
haddressi4711 Fruitdale Ave.h/addressi
hchildi

hpersoni hid=3, age=22i
hnameiJohnh/namei
haddressi5361 Columbia Ave.h/addressi
hhobbyiswimmingh/hobbyi
hhobbyicyclingh/hobbyi

h/personi
h/childi
hchildi

hpersoni hid=4, age=7i
hnameiDavidh/namei
haddressi4711 Fruitdale Ave.h/addressi

h/personi
h/childi

h/personi

hpersoni hid=2, age=38, child=4i
hnameiMaryh/namei
haddressi4711 Fruitdale Ave.h/addressi

hhobbyipaintingh/hobbyi
h/personi

2.2 Data Model for semi-structured data

XML is nothing else than a particular standard syntax for semi-structured data exchange[Bos99, Suc98].

The need for managing semi-structured data arised independently of the Web[Bun97] and various aspects

of managing semi-structured data have been extensively studied in the last years[Abi97, Bun97]. Broadly

speaking, semi-structured data refers to data with some of the following characteristics: (a) the schema is

not given in advance and may be implicit in the data, (b) the schema is relatively large (w.r.t. the size of the

data) and may be changing frequently, (c) the schema is descriptive rather than prescriptive, i.e., it describes

the current state of the data, but violations of the schema are still tolerated, (d) the data is not strongly

typed, i.e., for di�erent objects, the values of the same attribute may be of di�ering types.
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Many models have been proposed in the literature for semi-structured data, the big majority being based

on labeled directed graphs [Abi97, Bun97]. In this paper, we use a simple graph data model, similar to the

OEM model proposed in [PGMW95]. In this model, a semi-structured database is modeled as a directed

labeled graph in which the nodes model objects and the outgoing edges of an object model the attributes of

the object. Edges are labeled with attribute names. Each object has a unique identi�er and each internal

object has a set of attributes. In addition, the leaves in this graph are labeled with data values (e.g. integers,

strings, dates).1 The edges whose target objects are leaves are called data attributes; the other attributes

are called references. Unlike the object oriented data model, objects in the database are not constrained to

have similar sets of attributes and the values of the data attributes are not constrained to be of the same

type. The graph modeling the fragment of XML data given in Example 2.1 is depicted in Figure 2.2.

Mapping XML, which has been originally developed for mostly-text documents, into this theoretical data

model raises several problems. First, is the order of attributes and subelements of an object relevant? In

XML, the order can be sometimes arti�cially introduced for the purpose of serialization, even if the order

is not semantically relevant. However, in order not to loose the order for the cases where order is relevant,

we consider an ordered graph model in this paper; i.e., there is a total order on the set of outgoing arcs of

a node in the graph. The second question concerns the distinction between attributes and subelements. In

our work, we decided not to maintain this distinction, both being modeled as arcs in the graph. Finally,

another decision concerns the modeling of XML references (i.e., IDREFs). In our model, we implement

references as regular arcs in the graph. Obviously, the last two decisions imply loss of information when

translating from XML to the data model. However, taking the distinction between attributes and elements

and the particularities of references into consideration would not impact the results of our work, it would

only involve some extra bookkeeping.

2.3 Query language

The state of the art contains abundant work on query languages for semi-structured data (e.g. [AQM+97,

BDHS96, FFLS97]) or for XML[QL'98]. The major common characteristic of all these languages is the fact

that they are all based on a labeled graph model. Moreover, all such languages emphasize the ability to

query the schema of the data, and the ability to accommodate irregularities in the data, such as missing or

repeated �elds, heterogeneous records using regular path expressions.

In this paper we will take as an example the XML-QL query language[DFF+99]. XML-QL enables data

extraction from XML documents and allows to express mappings between di�erent ontologies. To query

unknown or unpredictable data structures, XML-QL and other query languages for semi-structured data

have two features in common: regular path expressions and the ability to query the schema (i.e., attributes

and references). In addition, XML-QL has a powerful restructuring mechanism; that is, the result of an

XML-QL query could be a complex XML document. In this paper, we will mostly ignore the restructuring

part and concentrate on the data extraction part of the language because data extraction is always the costly

part of query evaluation.

We consider queries to be of the form:

1XML currently does not distinguish between di�erent data types, but there are several proposals to extend XML in this
respect.
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Figure 1: Data Graph Corresponding to the XML Fragment of Example 2.1.

select hvariable-listi where hXML-patterni+

The where clause is a conjunction of XML-patterns. Each XML-pattern is de�ned as a tree where the

leaves are labeled with either constants, variables or unary predicates. Edges in the pattern are labeled with

either string constants, variables, unary predicates or regular path expressions constructed using alternation,

concatenation or a Kleene star over the alphabet of strings and the special \ " symbol (underscore) used

to denote so-called wild cards which match every attribute. Furthermore, subpatterns can be marked as

optional.
The query \�nd all the persons who are older than 18 and live in 4711 Fruitdale Ave., and retrieve their

names with (possibly) their hobbies" would be expressed in XML-QL as follows:

select $n, $h

where <person>

<age> $a </age>

<name> $n </name>

<address> 4711 Fruitdale Ave. </address>

[<hobby> $h </hobby> ]

</person>, $a>18

The evaluation of the query results in a table which contains bindings for all the variables used in the query.

The semantic of the language is the natural one: An object in the database will match a pattern if the data

tree rooted at the object matches the required pattern as a pre�x and if all the predicates and constant

selections in the pattern are satis�ed. With optional edges (enclosed in brackets in the XML-QL syntax),

objects qualify if they do not match that edge or if they match and the corresponding sub-tree matches the

optional sub-pattern. Optional sub-patterns can, themselves, contain optional edges. In our example, the

query returns two tuples [\Peter", null] and [\Mary", \painting"].
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3 Storing XML Documents in a Relational Database

In this section, we describe alternative mapping schemes that can be used to store an XML document in

a relational database. The starting point is the labeled graph which represents the XML document, as

described in Section 2.2. A mapping scheme determines which tables to create in the relational database,

which indices to construct, and in which tables to store the objects (internal nodes of the graph), attributes

(edges), and values (leaves). Of course, there are many meaningful mapping schemes conceivable for a given

XML document; in fact, inde�nitely many. We will concentrate on basic, canonic mapping schemes in this

section, and we characterize these mapping schemes along two dimensions: (a) how to represent attributes,

and (b) how to represent values. Along the �rst dimension, we discuss four di�erent variants and along the

second dimension, we discuss two alternative schemes, resulting in overall eight mapping schemes. (We will

assess �ve of these mapping schemes as part of our performance evaluation in Section 5.)

3.1 Mapping Attributes

3.1.1 The Edge Approach

The simplest scheme is to store all attributes in a single table; let us call this table the Edge table. The

Edge table records the oids of the source and target objects of the attribute, the name of the attribute, a ag

that indicates whether the attribute is an inter-object reference or points to a value, and an ordinal number

used to recover all attributes of an object in the right order and to carry out updates if objects have several

attributes with the same name. The Edge table, therefore, has the following structure:

Edge(source, ordinal, name, ag, target)

The key of the Edge table is fsource, ordinalg. Figure 2 shows how the Edge table would be populated for

the example XML document from Section 2.1. The bold faced numbers in the target column (i.e., 3 and

4) are the oids of the target objects. The italicized entries in the target column refer to representations of

values. Values cannot be stored in this way, but we put these values into the table for illustration purposes,

and we will discuss alternative ways to represent values for the Edge and other approaches in Section 3.2.

In that section, we will also discuss the role of the ag �eld, which is not shown in Figure 2.

In terms of indices, we propose to establish an index on the source column and a combined index on the

fname, targetg columns. The index on the source column is useful for forward traversals such as needed to

reconstruct a speci�c object given its oid. The index on fname, targetg is useful for backward traversals;

e.g., \�nd all objects that have a child named John." We experimented with di�erent sets of indices as part

of our performance experiments (not reported in this paper), and found these two indices to be the overall

most useful ones.

A simple variant of the Edge approach is to store the attribute names in a separate table. We also

experimented with that variant: that variant reduces the size of the database, but it signi�cantly increases

the cost of query processing because the fname, targetg index can no longer be established, thereby slowing

down backward traversals dramatically in some cases. We, therefore, will not consider this variant in the

remainder of this paper.
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source ordinal name target

1 1 age 55

1 2 name Peter

1 3 address Fruit.

1 4 child 3

1 5 child 4

2 1 age 38

. . . . . . . . . . . .

Figure 2: Example: Edge Table

Ahobby

source ordinal target

2 5 painting

3 4 swimming

3 5 cycling

Achild

source ordinal target

1 4 3

1 5 4

2 4 4

Figure 3: Example Attribute Tables

3.1.2 Attribute Approach

In the second mapping scheme, we propose to group all attributes with the same name into one table. This

approach resembles the binary storage scheme proposed to store semi-structured in [vZAW99]. Conceptually,

this approach corresponds to a horizontal partitioning of the Edge table used in the �rst approach, using

name as the partitioning attribute. Thus, there we create as many Attribute tables as di�erent attribute

names in the XML document, and each Attribute table has the following structure:

Aname(source, ordinal, ag, target)

The key of such an Attribute table is fsource, ordinalg, and all the �elds have the same meaning as in the

Edge approach. Figure 3 shows the hobby and child Attribute tables for our example XML document from

Section 2.1. In terms of indices, we propose to construct an index on the source column of every Attribute

table and a separate index on the target column. This is analogous to the indexing scheme we propose to

use for the Edge approach.

3.1.3 Universal Table

The third approach we study generates a single Universal table to store all the attributes of an XML

document. This corresponds to a Universal table [Ull89] with separate columns for all the attribute names

that occur in the XML document. Conceptionally, this Universal table corresponds to the result of an outer

join of all Attribute tables. The structure of the Universal table is as follows, if n1; : : : ; nk are the attribute

names in the XML document.

Universal(source, ordinaln1 , agn1 , targetn1 , ordinaln2 , agn2 , targetn2 , . . . , ordinalnk , agnk , targetnk )

Figure 4 shows the instance of the Universal table for our example XML document. As we can see in Figure 4,

the Universal table has many �elds which are set to null, and it also has a great deal of redundancy; the

value Peter, for instance, is represented twice because Object 1 has a multi-valued attribute (i.e., child).

source . . . ordname targname . . . ordchild targchild ordhobby targhobby
1 . . . 2 Peter . . . 4 3 null null

1 . . . 2 Peter . . . 5 4 null null

2 . . . 2 Mary . . . 4 4 5 painting

3 . . . 2 John . . . null null 4 swimming

3 . . . 2 John . . . null null 5 cycling

4 . . . 2 David . . . null null null null

Figure 4: Example Universal Table
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source . . . ordname agname targname . . . ordhobby aghobby targhobby
1 . . . 2 - Peter . . . null null null

2 . . . 2 - Mary . . . 5 - painting

3 . . . 2 - John . . . 4 m null

4 . . . 2 - David . . . null null null

Overowhobby

source ord target

3 4 swimming

3 5 cycling

Figure 5: Example UnivNorm and Overow Table

Putting it di�erently, the Universal table is denormalized|with all the known advantages and disadvantages

of such a denormalization. Corresponding to the indexing scheme of the Attribute approach, we propose to

establish separate indices on the source and all the target columns of the Universal table.

3.1.4 Normalized Universal Approach

The fourth approach, the UnivNorm approach, is a variant of the Universal table approach. The di�erence

between the UnivNorm and Universal approach is that multi-valued attributes are stored in separate Over-

ow tables in the UnivNorm approach. (This corresponds to the way that object-relational databases like

Oracle 8 would store multi-valued attributes.) For each attribute name that occurs in the XML document

a separate Overow table is established, following the principle of the Attribute approach.2 This way, there

is only one row per XML object in the UnivNorm table and that table is normalized. The structure of the

UnivNorm table and the Overow tables is as follows, if n1; : : : ; nk are all the attribute names in the XML

document:

UnivNorm(source, ordinaln1 , agn1 , targetn1 , ordinaln2 , agn2 , targetn2 , . . . , ordinalnk , agnk , targetnk )

Overown1
(source, ordinal, ag, target), . . . , Overownk

(source, ordinal, ag, target)

The key of the UnivNorm table is source. The key of an Overow table is fsource, ordinalg. If an attribute

is single-valued, the ag �eld indicates whether the attribute refers to another object or a value, as in all

the other approaches. If the attribute is multi-valued, the ag �eld is set to \m" to indicate this fact. If

the object has not got an attribute with that name, the ag �eld is naturally set to null. Figure 5 shows

the UnivNorm table and the hobby Overow table for our example XML document. Again, we propose to

establish separate indices on the source and all the target columns of the UnivNorm table as well as on the

source and target columns of all the Overow tables.

3.2 Mapping Values

We now turn to alternative ways to map the values of an XML document (e.g., strings like \Mary" or \4711

Fruitdale Ave."). We study two variants in this work: (a) storing values in separate Value tables; (b) storing

values together with attributes. Both variants can be used together with the Edge, Attribute, Universal, and

UnivNorm approaches, resulting in a total of eight possible mapping schemes. (In Section 5, however, we

will only assess �ve of these eight mapping schemes for brevity.)

2An alternative would be to establish a single Overow table for all multi-valued attributes and organize that Overow

table in the same way as the Edge table. We experimented with such an approach and found it to be inferior.
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Edge

source ordinal name ag target

1 1 age int v1

1 2 name string v2

1 3 address string v3

1 4 child ref 3

1 5 child ref 4

2 1 age int v4

. . . . . . . . . . . .

Vint
vid value

v1 55

v4 38

v8 22

v13 7

Vstring
vid value

v2 Peter

v3 4711 Fruitdale Ave.

v5 Mary

v6 4711 Fruitdale Ave.

v7 painting

. . . . . .

v15 4711 Fruitdale Ave.

Figure 6: Example: Edge Table with Separate Value Tables

3.2.1 Separate Value Tables

The �rst way to store values is to establish separate Value tables for each conceivable data type. There

could, for example, be separate Value tables storing all integers, dates, and all strings.3 The structure of

each Value table would simply be as follows, where the type of the value column depends on the type of the

Value table:

Vtype(vid, value)

Figure 6 shows how this approach would be combined with the Edge approach, completing our example of

Figure 2. The vids of the Value tables are generated as part of an implementation of the mapping scheme.

The ag column in the other tables now indicates in which Value table a value is stored; a ag can, therefore,

take values such as integer, date, string, or ref indicating an inter-object reference. In the very same way,

separate Value tables can be established for the Attribute, Universal, and UnivNorm approaches. In terms

of indices, we propose to index the vid and the value columns of the Value tables.

Looking closer at Figure 6, we observe that the value \4711 Fruitdale Ave." is stored three times in the

string value table. The reason is that this value occurs three times in the original XML document and in

the labeled graph that represents that document. Of course, it would be possible to �nd a more compact

mapping of the original XML document by storing such strings only once, but such an approach would

severely complicate the implementation of updates (e.g., it would require reference counting and garbage

collection). We, therefore, will not study such a compact representation in this paper. After all, the author

of the XML document could have established a separate address object which is referenced by the Peter,

Mary, and David objects in order to get a compact representation and model that Peter, Mary, and David

live at the same place.

3.2.2 Inlining

The obvious alternative is to store values and attributes in the same tables. In the Edge approach, this

corresponds to an outer join of the Edge table and the Value tables. (Analogously, this corresponds to outer

joins between the Attribute, Universal, UnivNorm, and Overow tables in the other approaches.) Hence, we

need a column for each data type. We refer to such an approach as inlining. Figure 7 shows how inlining

would work for the Attribute approach. Obviously, no ag is needed anymore, and a large number of null

3As stated in Section 2.2, XML currently does not di�erentiate between di�erent data types, but there are several standard

proposals to extend XML in this respect.
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Ahobby

source ord val int val string target

2 5 null painting null

3 4 null swimming null

3 5 null cycling null

Achild

source ord val int val string target

1 4 null null 3

1 5 null null 4

2 4 null null 4

Figure 7: Example: Attribute Tables with Inlining

values occur. In terms of indexing, we propose to establish indices for every value column separately, in

addition to the source and target indices.

An alternative to the representation with one value column for each data type would be to establish a

single value column that stores all values as strings, the most general type. In such a scheme, all values

would be converted to strings (e.g., 7 would be represented as \7"). Such an approach, however, would make

it impossible to use an index in order to �nd all objects with 5 < age < 22.

3.3 Other Mapping Schemes

As stated at the beginning of this section, there are, of course, many other mapping schemes conceivable.

There are even many variants of the eight simple mapping schemes presented in the previous two sections

conceivable; e.g., one or several Overow tables in the UnivNorm approach or hybrid approaches such as

establishing Attribute tables for frequent attributes and storing all the other attributes in an Edge table,

or inlining small values (e.g., integers) and storing large values (e.g., text) in separate value tables. In the

following, we will name just a few other mapping schemes that have been addressed in the literature or which

we have heard of in discussions.

� Selective Outer Joins of Attribute tables: as a compromise between the Attribute and Universal ap-

proach, it is possible to, say, store child and hobby attributes in separate Attribute tables and to store

name, age, address in a single, combined table; that is, to use Aname � Aage � Aaddress instead of

the individual Attribute tables. This approach is, of course, attractive if most objects that have a

name also have an age and an address, if each of these attributes only occur once per object, and if

queries that involve these objects typically ask for two or all three of these attributes. As stated in the

introduction, models and algorithms to extract such information have been proposed in the literature,

and we will discuss some of the tradeo�s of such an approach in Section 5.8.

� Selective Joins of Attribute tables: rather than storing Aname � Aage � Aaddress, this variant would

store Aname�Aage�Aaddress. In addition, Overow tables need to be established in order to store the

information of objects that have, say, a name and age, but no address. Materializing joins is attractive

if queries ask for all attributes whereas outer joins are also attractive if queries just ask for subsets of

the attributes. Some of the related theory of materializing joins and outer joins has been developed in

the context of access support relations [KM92].

� Redundancy: just as in any other database, materialized views can be established in order to speed

up the execution of queries. Finding the right views to materialize has been an active research area in

the context of data warehouses [HRU96, TS97]. It is likely to be at least as di�cult in the context of

mapping XML documents.
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4 Query Processing and Updates

In this section, we will discuss some of the details of implementing queries and updates with the alternative

mapping schemes. Going into the full details is beyond the scope of this paper so that we will concentrate

on a brief overview of the kinds of operations that are involved in order to implement queries posed in an

XML query language or to propagate updates carried out on the original XML document.

4.1 Queries

The overall approach is to translate an XML query into SQL, let the RDBMS execute the query, and do some

postprocessing in order to get the right query result (e.g., generate XML if this is requested by the query).

All three of these steps can be carried out in a straightforward way, but of course the most interesting step

is the translation into SQL. To get a avor for what the generated SQL looks like, and thus, what kinds of

operations the RDBMS must carry out, we will characterize the generated SQL for di�erent categories of

queries and the alternative mapping schemes. We will give performance results in Section 5.

Reconstructing Objects of the XML Document One very important type of query is to reconstruct

an object of the XML document, given the object's oid (i.e., get all attributes of the object without computing

the transitive closure). Such a simple query can be executed as follows for each mapping scheme:

� Edge/separate Value tables: a simple (indexed) lookup by source on the Edge table followed by an

(indexed) join with the Value tables

� Attribute/separate Value tables: an (indexed) lookup by source on all Attribute tables; take the union

of the results produced by these lookups and join with the Value tables

� Universal/separate Value tables: an indexed lookup by source on the Universal table; take the union

of all target columns and join that with the Value tables

� UnivNorm/separate Value tables: combination of what is done for the Universal and Attribute ap-

proaches for the UnivNorm and Overow tables, respectively

� inlining : simple (indexed) lookups on the Edge, Attribute, Universal, UnivNorm, and Overow tables;

joins with Value tables are not necessary.

In all mapping schemes, sorting by ordinal is required at the end, if this is required by the semantics of the

query. If the query involves reconstructing more than one object, in addition, sorting by source is required

so that the resulting objects can easily be re-grouped.

Selections on Values and Pattern Matching Queries that involve a selection on a value can also be

translated into SQL queries in a straightforward way; as an example, consider a query that asks for the

oids of objects that have swimming as a hobby. In the inline variants, such a query can be executed by

a simple (indexed) lookup of the appropriate value column in the Edge, Ahobby, Universal, UnivNorm, or

Overowhobby tables. If values are stored in separate tables, such a query involves an (indexed) lookup of
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the appropriate Value table and a join with the Edge table, the Ahobby table, the Universal table, or the

UnivNorm and Overowhobby tables.

If the query involves two predicates, then additional joins are necessary in the Edge, Attribute, and

UnivNorm approaches. If, for instance, a user is interested in the oids of all objects that have swimming as a

hobby and age 35, then executing this query would involve a self-join of the Edge table in the Edge approach,

an Ahobby �Aage join in the Attribute approach, and a union of UnivNorm [ (UnivNorm � Overowhobby)

[ (UnivNorm � Overowage) [ (Overowhobby � Overowage) in the UnivNorm approach. The Universal

approach materializes the results of theses kinds of joins so that such joins are not necessary in the Universal

approach.

Query languages like XML-QL make it also possible to pose queries that ask for a speci�c pattern. Just

like the XML document itself, the WHERE clause of an XML-QL query can be interpreted as a graph (see

Section 2.3). In general, evaluating a query in the Edge, Attribute and UnivNorm approaches involves the

execution of an e-way join (in addition to possibly joins with Value tables), where e is the number of edges

in the pattern. Evaluating a query in the Universal approach involves the execution of an n-way join (in

addition to joins with Value tables), where n is the number of nodes in the pattern, and n < e.

Optional Predicates As a result of the irregularity of the data, XML query languages also allow to pose

queries with optional predicates as in: �nd all objects that are 35 years old and have swimming as a hobby,

if they have a hobby. Such a query can be translated for all approaches into a SQL union query that asks

(a) for all objects that are 35 years old and have swimming as a hobby, and (b) for all objects that are 35

years old and have no hobby. (Note that no duplicate elimination is required as part of this union.)

Predicates on Attribute Names Another common feature of most XML query languages is the capa-

bility to support queries with predicates on attribute names. An example would be a query that asks for

objects that have an address or street with value \4711 Fruitdale Ave." In the Edge approach, such queries

can easily be translated into SQL by adding a predicate on the Edge.name column; e.g., name = 'address'

or name = 'street'. In all other approaches, the translation of such a query involves an initial step in

which the schema of the relational database is queried in order to �nd all the relevant Attribute and Over-

ow tables and/or the relevant �elds of the Universal and UnivNorm tables. Doing so is possible because

information about table and attribute names is stored in special, user-readable tables in most commercial

database products.

Regular Path Expressions XML query languages also support regular path expressions that make it

possible to navigate through irregular or unpredictable structures and ask for the transitive closure of objects;

e.g., �nd all ancestors of John. Such queries can be translated into recursive SQL queries in a straightforward

way. (If the RDBMS does not support recursive SQL queries, such queries need to be unrolled step by step.)

4.2 Updates

Updates to an XML document can also be propagated to the relational database in a straightforward way.

Typically, a series of SQL insert, update, and/or delete statements are required to propagate an update. In
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the following, we will briey discuss insertions and deletions of objects and attributes.

Inserting New Objects Objects can very easily be inserted in all mapping schemes. In the Edge and

Attribute approaches, one row is generated for each attribute of the new object. In the Universal approach,

the number of new rows depends on the presence of multi-valued attributes: if the object has no multi-valued

attributes, exactly one row is inserted for the new object into the Universal table; if the object has, say,

two multi-valued attributes with cardinality three and �ve, then �fteen new rows are generated. In the

UnivNorm approach exactly one row is inserted into the UnivNorm table and m rows are inserted into the

correspondingOverow table for a multi-valued attribute with cardinalitym. If values are stored in separate

Value tables, then of course, a row must be inserted into those Value tables for each value of the new object.

If the new object contains new attribute names, then the Universal and UnivNorm tables must be extended,

and new Attribute and Overow tables must be created.

Inserting New Attributes Adding an attribute to an existing object is again simple and straightforward

in the Edge and Attribute approaches and slightly more complicated in the other two schemes to map

attributes. In the Universal and UnivNorm approaches, di�erent cases must be di�erentiated; depending on

the presence of multi-valued attributes in the object and the existence of another attribute with the same

name as the new attribute, new rows must be generated or the tables must be updated. In all cases, the

insertion of a new attribute may involve updating the ordinal 's of the attributes that belong to the same

object and are located behind the new attribute in the XML document. (This procedure can be simpli�ed

in certain cases if we do not consider ordered semantics; see Section 2.2.) If values are stored in separate

Value tables and the new attribute contains a value, then of course, the corresponding Value table must be

updated. Also, if the name of the new attribute is novel, then the same measurements as for new objects

with new attribute names must be made in the Attribute, Universal, and UnivNorm schemes.

Deleting an Object In all approaches, objects can easily be deleted by deleting the corresponding rows

from all tables. If values are stored in separate Value tables, then an object must be read before it is deleted

in order to �nd the object's values which must be deleted from the Value tables.

Deleting an Attribute Deleting an attribute from an object is, again, very simple to implement for the

Edge and Attribute approaches and it involves looking at di�erent cases for the Universal and UnivNorm

approaches (analogous to inserts). In all approaches, deleting an attribute may involve reorganization of the

ordinal values. Furthermore, in all approaches that use separate Value tables, the attribute must be read

�rst in order to �nd whether the attribute contains a value which must be deleted, too.

5 Evaluating the Mapping Schemes

5.1 Plan of Attack

In order to study the tradeo�s of the alternative mapping schemes we carried out a series of performance

experiments. We study, in particular, the size of the resulting relational database for each mapping scheme,
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the time to bulkload the relational database given an XML document, the time to reconstruct the XML

document from the relational data, the time to execute di�erent classes of XML queries, and the time to

execute di�erent kinds of update functions.

All experiments are carried out using a synthetic XML document as a starting point. While real XML

data is already available to some extent4, it is unclear what the characteristics of a typical XML document

would be. Rather than using real XML data or generating an XML document that would resemble real XML

data, we use an XML document that allows us to speci�cally study the tradeo�s of the mapping schemes

and we only model certain characteristics that can be found in real XML data (e.g., the presence of large

text �elds).

To simplify the discussion, we will only present experimental results for �ve of the eight alternative

mapping schemes described in Section 3. We will study the Edge, Attribute, Universal, and UnivNorm

approaches with separate Value tables in order to study the tradeo�s of the di�erent ways to map attributes.

In addition, we will study the Attribute approach with inlining in order to compare inlining and the separate

Value tables variants.

As an experimental platform, we use a commercial relational database system5 installed on a Sun Sparc

Station 20 with two 75 MHz processors and 128 MB of main memory and a disk that stores the database

and intermediate results of query processing. The machine runs on Solaris 2.6. In all our experiments, we

limited the size of the main memory bu�er of the database to 6.4 MB, which was less than a tenth of the

size of the XML document. Other than that, we use the default con�guration of the database system, if

not stated otherwise. (For some experiments, we used non-default options for query optimization; we will

indicate those experiments when we describe the results.) All software which runs outside of the RDBMS

(e.g., programs to prepare the XML document for bulkloading or implementations of the update functions) is

implemented in Java and runs on the same machine. Calls to the relational database from the Java programs

are implemented using JDBC.

5.2 Benchmark Speci�cation

5.2.1 Benchmark Database

The characteristics of the synthetic XML document we generate for the performance experiments are de-

scribed in Table 1. The XML document consists of n objects. Each object has 0::fn attributes containing

inter-object references and 0::fv attributes with values. The document is at; that is, there is no nesting of

objects. (Given our XML data model described in Section 2.2, at documents with references have the same

semantics as documents with nested objects.) All attributes are labeled with one of d di�erent attribute

names; we will refer to these names as a1; : : : ; ad, but in fact each name is l bytes long. There are two types

of values: short strings with s bytes and long texts with t bytes. ps% of the values are strings and pt% of

the values are text. We use a uniform distribution in order to select the number of attributes for each object

individually and to to determine the objects referenced by an object and the name of every attribute. The

graph that represents the XML document contains cycles, but this fact is not relevant for our experiments.

4See, e.g., www.oasis-open.org/cover/xml.html.
5Our licenses agreement does not allow us to publish the name of the database vendor.
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n 100,000 number of objects

fn 4 maximum number of attributes with inter-object references per object

fv 9 maximum number of attributes with values per object

s 15 size of a short string value [bytes]

t 500 size of a long text value [bytes]

ps 80 percent of the values that are strings

pt 20 percent of the values that are text

d 20 number of di�erent attribute names

l 10 size of an attribute name [bytes]

Table 1: Characteristics of the XML Document

Since the XML document contains values of two di�erent data types (string and text), two Value tables

are generated in the relational database for the mapping schemes without inlining and two value columns

are included in the Attribute scheme with inlining. We index the strings completely, as proposed in Sec-

tion 3.2, but we do not index the text (for obvious reasons), deviating from the proposed indexing scheme of

Section 3.2. Strings and text, as well as attribute names (in the Edge table) are represented as varchars in

the relational database. ags are represented as chars, and all other information (e.g., oids, vids, ordinals,

etc.) is represented as number(10,0).

The parameter settings we use for our experiments are also shown in Table 1. We create a database

with 100,000 objects. Each object has, on an average, two attributes with inter-object references and 4.5

attributes with values. So, we have a total of approximately 450,000 values; 90,000 texts of 500 bytes and

360,000 short strings of 15 bytes.

5.2.2 Benchmark Queries

Table 2 describes the XML-QL query templates that we use for our experiments. The XML-QL formulation

for these queries is given in the appendix of this paper. These query templates test a variety of features

provided by XML-QL, including simple selections by oid and value, optional predicates, predicates on at-

tribute names, pattern matching, and regular path expressions. In all, we test �fteen queries as part of

our benchmark. We test each of the Q2 to Q8 templates in two variants: one light variant in which the

predicates are very selective so that index lookups are e�ective and intermediate results �t in memory, and

one heavy variant in which the use of indices is typically not attractive and intermediate results do not �t

into the database bu�ers. Speci�cally, we set the predicates on a1 to select 0.1% of the values in the light

query variants and to select 10% of the values in the heavy variants. The predicates on a2 are always set

to select 30% of the values. All predicates involve strings only (no text). For our benchmark database, the

size of the result sets for each of these �fteen benchmark queries is listed in Table 3. How the queries are

translated into SQL queries for each mapping scheme is outlined in Section 4.1: of course, the XML-QL to

SQL translation does not depend on the selectivity of the predicates, and we made sure that the translation

is correct for each mapping scheme by checking the results produced by every query.

To get reproducible experimental results, we carry out all benchmark queries in the following way: every

query is carried once to warm up the database bu�ers and then at least three times (depending on the query)

in order to get the mean running time of the query. Warming up the bu�ers impacts the performance of

the light queries that operate on data that �ts in main memory; warming up the bu�ers, however, does not
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Query Description Feature

Q1 reconstruct XML object with oid = 1 select by oid

Q2 �nd objects that have attribute a1 with value in certain range select by value

Q3 �nd objects that have attributes a1 and a2 with certain values two predicates

Q4 �nd objects that have a1 and a2 with certain value or just a1 with certain value optional predicate

Q5 �nd objects that have a1 or a2 or a3 with certain value predicate on attribute name

Q6 �nd object that match a complex pattern with seven references and eight nodes pattern matching

Q7 �nd all objects that are connected by a chain of a1 references regular path expression

to an object with a speci�c a1 value

Q8 �nd all objects that are connected by a chain of a1 or a2 references regular path expression with

to an object with a speci�c a1 or a2 value a predicate on the attribute name

Table 2: Benchmark Query Templates

Q1 Q2L Q2H Q3L Q3H Q4L Q4H Q5L Q5H Q6L Q6H Q7L Q7H Q8L Q8H

9 11 1805 3 131 9 1386 50 5556 1 3 11 2309 37 4616

Table 3: Size of Result Sets of Benchmark Queries

impact the results of the heavy queries.

5.2.3 Update Functions

As part of our benchmark, we carry out four update functions which are described in Table 4. These four

update functions test the insertion and deletion of whole objects and individual attributes. The new objects

have the same characteristics as the other objects of our database and the new attributes contain 15-byte

strings with 80% probability and 500-byte text with 20% probability. The implementation of the update

functions for each mapping scheme is described in Section 4.2. The update functions do not insert XML

attributes with new attribute names so that no new Attribute or Overow tables need to be created and

the Universal and UnivNorm tables need not be altered as part of executing the update functions. The

database product we used for our experiments, carries out these kinds of operations very quickly; in general,

however, the cost of such operations strongly depends on the implementation of the RDBMS, and we were

not interested in such particularities of an RDBMS. We carry out these four update functions in sequential

order and only once.

5.3 Database Size

Table 5 shows the size of the XML document and of the resulting relational database for each mapping

scheme. The size of the XML document is about 80 MB, and we see that even without indices every

mapping scheme produces a larger relational database. Even the Attribute and UnivNorm approaches result

in more than 80 MB of base data, although they store every attribute name only once (as part of the schema)

whereas every attribute name (of 10 bytes) occurs approximately 32,500 times (650,000 attributes divided by

20 di�erent names) in the XML document. The Edge approach, like the XML document, stores every name

multiple times and, therefore, produces more base data than the Attribute and UnivNorm schemes. Recall

U1 generate 100 new objects; commit after every new object

U2 insert 1000 new attributes into randomly selected objects; commit after every new attribute

U3 delete 1000 random attributes form random objects; commit after every attribute

U4 delete 100 random objects; commit after every object

Table 4: Update Functions

16



from Section 3.1 that a variant of the Edge approach that stores the attribute names in a separate table would

result in a smaller relational database (overall reduction of about 15 MB in our benchmark), but it would

also result in signi�cantly increased query response times. The Universal approach, of course, produces the

most base data because the Universal table is denormalized as described in Section 3.1. Comparing the

Attribute approach with and without inlining, we see that inlining results in a smaller relational database:

no vids are stored in the inline variant and nulls which are produced by the inline variant are stored in a

very compact way by our RDBMS. Looking at the size of the indices, we can see that indices can consume

up to 40% of the space.

XML Attribute Edge Universal UnivNorm Attr.+Inline

base data 79.2 105.2 122.3 138.9 109.7 86.9

indices { 71.1 85.6 76.7 49.3 52.7

total 79.2 176.3 207.9 215.6 159.0 139.6

Table 5: Database Sizes [MB]

5.4 Bulkloading Times

Table 6 shows the time it takes to prepare the XML document for bulkloading, do the actual bulkloading,

and analyze the resulting tables and create indices for each mapping scheme. There are no surprises.

Obviously, bulkloading takes the longest for the Universal approach because this approach is complicated

by the denormalization of the data and because this approach produces the most relational data.

Attribute Edge Universal UnivNorm Attr.+Inline

prepare 5m 50s 7m 1s 13m 3s 7m 40s 4m 30s

bulkload 26m 22s 26m 51s 47m 49s 23m 54s 25m 20s

analyze/indices 9m 26s 13m 43s 11m 35s 12m 39s 9m 20s

total 41m 37s 47m 35s 1h 2m 27s 44m 13s 39m 10s

Table 6: Bulkloading Times

5.5 Reconstructing the XML Document

Table 7 shows the overall time to reconstruct the XML document (and write it to disk) from the relational

data for each mapping scheme. In all cases, it takes more than 30 minutes, and this fact is probably the most

compelling argument against the use of RDMBSs to store XML data. As stated in Section 4.1, all mapping

schemes need to sort by oid in order to re-group the objects, and this sort is expensive in our environment (it

is an 80 MB sort with 6.4 MB of memory). The disastrous running times for the Universal and UnivNorm

approaches with separate Value tables can also be explained. The Universal and UnivNorm tables must be

scanned d = 20 times (once for each attribute name) in order to restructure the data and carry out the joins

with the Value tables.

Attribute Edge Universal UnivNorm Attr.+Inline

56m 52s 40m 56s 1h 41m 17s 1h 50m 58s 32m 8s

Table 7: Reconstructing the XML Document
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Attribute Edge Universal UnivNorm Attr.+Inline

Q1 0.036 0.023 0.074 0.115 0.024

Q2(l) 0.104/4.6 0.089/5.3 0.093/4.8 0.139/9.6 0.011/5.3

Q2(h) 15.7 83.0 62.1 31.0 0.644/5.5

Q3(l) 6.0 5.1 5.8 100.6 2.0

Q3(h) 15.8 133.7 70.5 150.5 3.5

Q4(l) 12.3 9.9 11.7 108.0 4.1

Q4(h) 32.0 255.7 132.9 201.5 6.7

Q5(l) 0.277/15.4 5.1 14.2 28.2 0.028/13.9

Q5(h) 48.6 148.1 185.8 169.4 14.8

Q6(l) 0.130/6.5 6.1 0.141/6.3 248.0 0.017/2.0

Q6(h) 17.0 123.7 63.7 256.9 3.3

Q7(l) 0.111/6.2 0.101/5.4 0.096/6.2 49.9 0.012/5.3

Q7(h) 16.8 221.5 62.7 57.0 1.060/6.6

Q8(l) 18.3 5.0 91.4 50.4 32.7

Q8(h) 47.2 392.0 206.9 152.1 36.3

Table 8: Running Times of the Queries [secs]; Tuned/Untuned

5.6 Running Times of the Queries

Table 8 shows the running times of our �fteen benchmark queries for each mapping scheme. In most cases,

the optimizer of the RDBMS found good plans with the default con�guration. In some cases, however, we

were able to get signi�cant improvements by using a non-default con�guration; for such cases, Table 8 shows

the running times obtained using the untuned (default) optimizer con�guration and the tuned optimizer

con�guration. Most of the improvements were achieved for light queries and by forcing the optimizer to use

indices instead of table scans and index nested-loop joins instead of hash or sort-merge joins.

In all, we can make the following two observations:

� Of all the alternative ways to map attributes, the Attribute approach is the winner.

� Inlining clearly beats separate Value tables.

Both of these results can be explained fairly easily. The Edge approach performs poorly for heavy queries

because joins with the (large) Edge table become expensive in this case; in e�ect, most of the data in the

Edge table is irrelevant for a speci�c query. For the same reason, the Universal approach with its very

large Universal table performs poorly for heavy queries. In the Attribute approach, on the other hand, only

relevant data is processed. The same kind of bene�ts of a binary table approach have been observed in

the Monet project for (structured) TPC-D data [BWK98]; for XML data the bene�ts are particularly high.

The UnivNorm approach is less sensitive towards the size of intermediate query results, but the UnivNorm

approach often does the same work twice: once for the UnivNorm table and once for the Overow tables.

The UnivNorm approach, therefore, performs poorly in almost all cases. Explaining the di�erences between

inlining and separate Value tables is even easier: inlining simply wins because it saves the cost of the joins

with the Value tables. The results show that inlining beats separate Value tables even if very large values

(such as text) are inlined.

Q8(l) and to some extent Q1 and Q5(l) are exceptions to the above rules. These three queries involve

a predicate on the attribute names (Q5 and Q8) or a wild card (Q1), and the Edge approach is attractive

for such queries because such predicates can directly be applied to the Edge table whereas executing such
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Function Attribute Edge Universal UnivNorm Attr.+Inline

U1 creating objects 12.0 11.5 12.5 9.5 10.3

U2 inserting attributes 67.8 51.5 332.1 131.8 47.3

U3 deleting attributes 42.9 89.6 109.4 106.5 42.3

U4 deleting objects 28.5 8.0 25.2 44.1 14.9

Table 9: Running Times of the Update Functions [secs]

predicates involves a separate \querying the schema" step and the generation of a SQL UNION query for the

other mapping schemes.

5.7 Running Times of the Update Functions

Table 9 shows the running times of the four update functions of our benchmark for each mapping scheme.

Again, there are no surprises, and we would just like to point out the most important e�ects:

� The cost of creating new objects (U1) is fairly much the same for all mapping schemes.

� Inserting new attributes (U2) is signi�cantly more expensive in the Universal and UnivNorm ap-

proaches than in the other approaches because more update and insert statements must be executed

for these approaches (Section 4.2). In the Universal approach, this is a result of the denormalization

of the data. In the UnivNorm approach, this is a result of the complicated organization which makes

it necessary to move attributes from the UnivNorm to an Overow table if a single-valued attribute is

turned into a multi-valued attribute (e.g., if Mary gets a second hobby).

� For the same reason, the deletion of attributes (U3) is most expensive in the Universal and UnivNorm

approaches.

� Deleting whole objects (U4) is cheapest in the Edge approach; here, only three statements must be

carried out: (a) probe the Edge table to detect the values that must be deleted from the Value tables;

(b) delete those values from the Value tables; and (c) delete the relevant rows from the Edge table.

Deleting objects in the Attribute approach (with or without inlining) is more expensive because it

involves separate SQL (select and delete) statements for every Attribute table, plus, maybe, for the

Value tables. In the Universal approach without inlining, the same kind of overhead occurs: every

target column must be probed separately in order to �nd the values that must be deleted. In the

UnivNorm approach without inlining, this kind of overhead is carried out twice: (a) probe the target

columns of the UnivNorm table, and (b) probe the relevant Overow tables.

5.8 Experiments with Other Mapping Schemes

In all, we experimented with many di�erent mapping schemes as part of our work, and decided to present

only the most relevant results in this paper. As promised in Section 3.3, however, we do want to show what

happens if we materialize the outer join of two Attribute tables, with and without inlining, in our particular

benchmark with highly irregular data. Such a mapping scheme could, for instance, be recommended by

an algorithm that extracts schema. For these experiments, we materialize A1 � A2 (instead of separate
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Separate Value Tables Inlining

A1; A2 A1 �A2 A1; A2 A1�A2

Q3(h), anticip. 16.2 15.3 3.1 3.1

Q4(h), anticip. 32.6 32.3 6.7 3.1

Q3(h), unanticip. 16.1 15.8 3.1 6.2

Q4(h), unanticip. 32.0 32.8 7.0 44.1

Table 10: Materializing the Outer Join of Two Attribute Tables [secs]

Attribute tables for A1 and A2) and run Q3(h) and Q4(h). Both of these queries only operate on the a1

and a2 attributes. So, these queries are anticipated, and materializing A1�A2 should help for these queries

because it saves the cost of joining the individual Attribute tables. We also run unanticipated variants

of Q3(h) and Q4(h). These variants operate on the a1 and a3 attributes so that materializing A1 � A2

does not help because a join with A3 is needed. Table 10 shows the results of running the anticipated and

unanticipated variants of Q3(h) and Q4(h) using a table that materializesA1�A2 with and without inlining.

As a baseline, Table 10 also shows how the simple Attribute schemes (with and without inlining) perform

for these queries (denoted as fA1; A2g). We can make the following observations:

� if values are stored in separate tables, fA1; A2g and A1�A2 show essentially the same performance in

all cases. The cost of query processing is dominated by the joins with the Value tables so improvements

in storing the references do not result in a noticeable speed-up.

� if values are inlined, materializing A1 � A2 helps in the anticipated case (more than a factor of two

for Q4(h)) for saving the join which does dominate the cost in this case, but it looses signi�cantly in

the unanticipated case. The reason is that in the unanticipated case the join with A3 becomes more

expensive because A1� A2 is much larger than just A1.

6 Conclusions

We studied the performance of (standard) relational databases for the purpose of managing XML documents.

Relational databases have many important advantages: One, RDBMS products are mature and scale very

well. Two, traditional (structured) data and semi-structured data can co-exist in a relational database, mak-

ing it possible to develop applications that use both kinds of data with virtually no extra e�ort. Three, our

experiments showed that RDBMSs are able to process even complex XML queries on large databases within

seconds; it is unlikely that the same query performance can be achieved today with any other commercially

available technology. On the negative side, our experiments showed that it is very expensive to reconstruct

the original XML data from the relational data and that updates are both complicated and expensive to

implement in certain cases. Also, extra e�ort must be made to translate XML queries and updates into SQL

when using a relational database; in the mapping schemes we considered in this work, this translation is both

easy to implement and cheap to execute, but this translation can become very complex if more sophisticated

mapping schemes are used (e.g., such as those proposed in [DFS]). Another potential disadvantage, which we

did not address in this work, is that components such as authorization and concurrency control need to be

implemented outside of the RDBMS because the corresponding built-in components of the RDBMS do not
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work properly since they require fully structured data. The result is that the same kind of functionality is

implemented (and possibly executed twice) and a great deal of the functionality implemented in the RDBMS

is not used.

We also studied alternative ways to store XML data in a relational database. Our experimental results

clearly show that an approach which is based on separate Attribute tables for every attribute name that

occurs in an XML document and inlining of values into these Attribute tables is the best overall approach.

Even large values (e.g., text) can be inlined without signi�cantly hurting the performance of this approach.

Ideally, of course, it is desirable to make exible decisions about what kind of data to inline and to keep

information of certain attributes in a single table, using statistics of the XML document and knowledge

of the anticipated query workload. Our results, however, are encouraging because they show that robust

performance can be achieved with a much simpler approach. Also, our results show that sometimes a more

sophisticated approach can hurt more than it helps.

There are several avenues for future work. Our results are only one initial step in order to answer the big

overall question whether to use relational systems, object-oriented systems, or special-purpose data stores to

manage XML documents. So, we plan to run our benchmark on an OODBMSs and on special-purpose XML

data repositories as well. Furthermore, our benchmark can be used to decide which is the best relational

database product for the speci�c purpose of storing XML documents, and we are going to put all the details

and the software of our benchmark on the web. In addition, our results encourage further work on the

e�cient implementation of binary data models [CK85, BWK98].
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A The benchmark queries in XML-QL

Query 1 : Retrieve all the attributes of XML object o1

select $l, $v

where < >

< id > o1 < /id >

< $l > $v < /$l >

< / >

Query 2 : Find objects that have an attribute a1 with a value in a certain range

select $oid, $v

where < >

< id > $oid < /id >

< a1 > $v < /a1 >

< / >, $v between c1 and c2

Query 3 : Find objects that have attribute a1 and a2 with values in certain ranges

select $oid. $v1, $v2
where < >

< id > $oid < /id >

< a1 > $v1 < /a1 >

< a2 > $v2 < /a2 >

< / >, $v1 between c1 and c2, $v2 between c3 and c4

Query 4 : Find objects that have attribute a1 and a2 with values in certain ranges, or just a1 with a value in a

certain range

select $oid, $v1, $v2
where < >

< id > $oid < /id >

< a1 > v1 < /a1 >

[ < a2 > v2 < /a2 >, $v2 between c3 and c4]

< / >, $v1 between c1 and c2

Query 5 : Find objects that have attribute a1 or a2 or a3 with a value in a certain range (regular expression with

disjunction)

select $oid, $v

where < >

< id > $oid < /id >

< a1 j a2 j a3 > v < / >

< / >, $v between c1 and c2

Query 6 : Find objects that match a complex pattern with seven references and eight nodes

select $oid, $v1, $v2, $v3, $v4, $v5
where < >

< id > $oid < /id >

< a1 > $v1 < /a1 >

< a2 >

< a4 > $v2 < /a4 >

< a5 > $v3 < /a5 >

< /a2 >

< a3 >

< a6 > $v4 < /a6 >

< a7 > $v5 < /a7 >

< /a3 >

< / >, $v1 between c1 and c2
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Query 7 : Find all objects that are connected by a chain of a1 references to an object with an a1 value in a certain

range (Kleene star)

select $oid, $v

where < >

< id > $oid < /id >

< (a1)* > $v < / >

< / >, $v between c1 and c2

Query 8 : Find all objects that are connected by a chain of a1 or a2 references to an object with an a1 or a2 value

in a certain range (complex regular expression)

select $oid, $v

where < >

< id > $oid < /id >

< (a1 j a2)* > $v < / >

< / >, $v between c1 and c2
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