A Performance Evaluation of Alternative Mapping Schemes for
Storing XML Data in a Relational Database

Daniela Florescu Donald Kossmann
Inria, France University of Passau, Germany
dana@rodin.inria.fr kossmann@db.fmi.uni-passau.de

August 3, 1999
Abstract

XML is emerging as one of the dominant data formats for data processing on the Internet. To query
XML data, query languages like XQL, Lorel, XML-QL, or XML-GL have been proposed. In this paper,
we study how XML data can be stored and queried using a standard relational database system. For this
purpose, we present alternative mapping schemes to store XML data in a relational database and discuss
how XML-QL queries can be translated into SQL queries for every mapping scheme. We present the
results of comprehensive performance experiments that analyze the tradeoffs of the alternative mapping
schemes in terms of database size, query performance and update performance. While our discussion
is focussed on XML and XML-QL, the results of this paper are relevant for most semi-structured data
models and most query languages for semi-structured data.

1 Introduction

It has become clear that not all applications are met by the relational, object-relational, or object-oriented
data models. Examples are applications that need to integrate data from several data sources or applications
for which the schema is not known at the time the data is generated[Bos99]. To support these kinds of
applications, semi-structured data models have been proposed [Abi97, Bun97, Suc98]. One common feature
of these data models is the lack of schema so that the data is self-describing. XML is emerging as a standard
to define such semi-structured data. Also, to retrieve data from such semi-structured databases, special
semi-structured query languages have been proposed [QL’98]; examples are XQL [RLS98], Lorel [AQM*97],
XML-QL [DFF*99], or XML-GL [CCD*99]. Common features of these languages are the use of regular
path expressions and the ability to extract information about the schema from the data.

There are three possible approaches to store semi-structured data (i.e., XML documents) and to execute
queries on that data. One, build a special-purpose database system. Example research prototypes are Ru-
fus [SLST93], Lore [MAG™97] and Strudel [FFK*98]; Lotus Notes is an example commercial product[Lot98].
Such a system is particularly tailored to store and retrieve XML data, using specially designed structures
and indices MWA 198, Moh99] and particular query optimization techniques[FLS97, MW97]. To some ex-
tent SGML database systems [YIU96, SD96] or systems like GRAS [KSW95] which are designed to store
graphs fall into this category of special-purpose systems as well. Two, use an object-oriented database
system. In this approach, the rich data modeling capabilities of OODBMSs are exploited. This approach
has, for example, been studied in [CACS94] and implemented in commercial systems like O or Objectsore.
This approach is also pursued as part of the Monet project [vZAW99]. Three, use a (standard) relational

database system. In this approach, XML data is mapped into tables of a relational schema and queries posed

in a semi-structured query language are translated into SQL queries. Apparently, Oracle and Microsoft are
currently building tools to facilitate this approach.

It is still unclear which of these three approaches is going to find wide-spread acceptance. In theory,
special-purpose systems should work best, but it is going to take a long time before such systems are mature
and scale well for large amounts of data. Likewise, the current generation of object-oriented database
systems is not yet mature enough to evaluate queries on very large databases. Relational database systems
are mature and scale very well, and they have the additional advantage that in a relational database XML
data and traditional (structured) data can co-exist making it possible to build applications that involve both
kinds of data with little extra effort. Relational databases, however, have been built to support traditional
(structured) data and the requirements of processing XML data are vastly different from the requirements
to process such traditional data. To optimize the use of relational database systems for XML, recent work
has concentrated on models and algorithms to extract schema from XML documents or semi-structured data
in general; e.g., [BDFS97, NAM98, DFS]. The goal of that work is to analyze the semi-structured data
and (possibly) the query workload of the target application in order to find the best approximated schema.
This way the semi-structured data can be stored in the relational database with little offcuts, and schema
extraction makes it also easier to formulate queries [GW97].

The purpose of this experience paper is to study the overall performance of relational databases to process
XML data. Rather than eztracting schema, our goal is to study the general advantages and pitfalls of using
relational databases to store and manage XML data and to study the tradeoffs of fundamentally different
schemes to store XML documents in relational databases. We describe five alternative mapping schemes
that can be used to store XML documents, show how queries and updates are processed for each of these
mapping schemes, and present the results of comprehensive performance experiments that analyze the space
requirements, the bulkloading times, the running times to reconstruct an XML document, and the running
times of a series of queries and update functions for each mapping scheme. The mapping schemes we study
are very simple and can be implemented in an ad-hoc way, but they can also be improved by using one of the
models to extract schema. Also, the results of our performance experiments can be used as input for such
models. In our experiments, we use a synthetic experimental database and synthetic benchmark queries and
update functions.

The remainder of this paper is organized as follows: Section 2 gives a brief overview of XML and query
languages for XML. Section 3 describes alternative mapping schemes that can be used to store XML
documents in a relational database. Section 4 addresses query processing issues. Section 5 presents the

results of our performance evaluation. Section 6 contains conclusions and suggestions for future work.

2 Data Model and Query Language
2.1 XML

The Extensible Markup Language (XML) has been created by the World Wide Web Consortium (W3C)
as a simplified subset of SGML specially designed for Web applications. The goal of XML is to enable the

delivery of self-describing data structures of arbitrary depth and complexity to applications that require such

structures. XML retains the key SGML advantages of extensibility, structure, and validation in a language
that is designed to be vastly easier to learn, use, and implement than full SGML. XML differs from HTML in
three major respects: (a) information providers can define new tag and attribute names at will, (b) document
structures can be nested to any level of complexity, and (c¢) any XML document can contain an optional
description of its grammar for use by applications that need to perform structural validation.

Structurally, each XML document consists of a set of elements, the boundaries of which are delimited
by start-tags and end-tags. Each element has a type, identified by name, sometimes called its ”generic
identifier”, and may have a set of attribute specifications. Each attribute specification has a name and a
value. In addition, each element can have an arbitrary list of (nested) subelements. The example below

gives a flavor of the XML language.

Example 2.1: Let’s assume that a data source wants to export information (e.g. names, addresses and
hobbies) of the members of a family. A possible way of structuring this information and representing it in
XML is as follows. Each person has a unique identifier id and an age attribute. Information about the
hobbies of a given person are provided as valued subelements. The child elements of Person 1 contain the

children of the family as subelements, while the child element of Person 2 only contains a pointer to its child.

(person) (id=1, age=55)
(name)Peter(/name)
(address)4711 Fruitdale Ave.(/address)
(child)
(person) (id=3, age=22)
(name)John(/name)
(address)5361 Columbia Ave.(/address)
(hobby)swimming(/hobby)
(hobby)cycling(/hobby)

(/person)
(/child)
(child)
(person) (id=4, age=T7)
(name)David(/name)
(address)4711 Fruitdale Ave.(/address)
(/person)
(/child)
(/person)

(person) (id=2, age=38, child=4)
(name)Mary(/name)
(address)4711 Fruitdale Ave.(/address)
(hobby)painting(/hobby)
(/person)

2.2 Data Model for semi-structured data

XML is nothing else than a particular standard syntax for semi-structured data exchange[Bos99, Suc98].
The need for managing semi-structured data arised independently of the Web[Bun97] and various aspects
of managing semi-structured data have been extensively studied in the last years[Abi97, Bun97]. Broadly
speaking, semi-structured data refers to data with some of the following characteristics: (a) the schema is
not given in advance and may be implicit in the data, (b) the schema is relatively large (w.r.t. the size of the
data) and may be changing frequently, (c) the schema is descriptive rather than prescriptive, i.e., it describes
the current state of the data, but violations of the schema are still tolerated, (d) the data is not strongly

typed, i.e., for different objects, the values of the same attribute may be of differing types.

Many models have been proposed in the literature for semi-structured data, the big majority being based
on labeled directed graphs [Abi97, Bun97]. In this paper, we use a simple graph data model, similar to the
OEM model proposed in [PGMW95]. In this model, a semi-structured database is modeled as a directed
labeled graph in which the nodes model objects and the outgoing edges of an object model the attributes of
the object. Edges are labeled with attribute names. Fach object has a unique identifier and each internal
object has a set of attributes. In addition, the leaves in this graph are labeled with data values (e.g. integers,

strings, dates).!

The edges whose target objects are leaves are called data attributes; the other attributes
are called references. Unlike the object oriented data model, objects in the database are not constrained to
have similar sets of attributes and the values of the data attributes are not constrained to be of the same
type. The graph modeling the fragment of XML data given in Example 2.1 is depicted in Figure 2.2.
Mapping XML, which has been originally developed for mostly-text documents, into this theoretical data
model raises several problems. First, is the order of attributes and subelements of an object relevant? In
XML, the order can be sometimes artificially introduced for the purpose of serialization, even if the order
is not semantically relevant. However, in order not to loose the order for the cases where order is relevant,
we consider an ordered graph model in this paper; i.e., there is a total order on the set of outgoing arcs of
a node in the graph. The second question concerns the distinction between attributes and subelements. In
our work, we decided not to maintain this distinction, both being modeled as arcs in the graph. Finally,
another decision concerns the modeling of XML references (i.e., IDREFs). In our model, we implement
references as regular arcs in the graph. Obviously, the last two decisions imply loss of information when
translating from XML to the data model. However, taking the distinction between attributes and elements
and the particularities of references into consideration would not impact the results of our work, it would

only involve some extra bookkeeping.

2.3 Query language

The state of the art contains abundant work on query languages for semi-structured data (e.g. [AQM™'97,
BDHS96, FFLS97]) or for XML[QL’98]. The major common characteristic of all these languages is the fact
that they are all based on a labeled graph model. Moreover, all such languages emphasize the ability to
query the schema of the data, and the ability to accommodate irregularities in the data, such as missing or
repeated fields, heterogeneous records using regular path expressions.

In this paper we will take as an example the XML-QL query language[DFF99]. XML-QL enables data
extraction from XML documents and allows to express mappings between different ontologies. To query
unknown or unpredictable data structures, XML-QL and other query languages for semi-structured data
have two features in common: regular path expressions and the ability to query the schema (i.e., attributes
and references). In addition, XML-QL has a powerful restructuring mechanism; that is, the result of an
XML-QL query could be a complex XML document. In this paper, we will mostly ignore the restructuring
part and concentrate on the data extraction part of the language because data extraction is always the costly
part of query evaluation.

We consider queries to be of the form:

XML currently does not distinguish between different data types, but there are several proposals to extend XML in this
respect.

Mary 4711 Fruitdgfe Ave. painting

55 Peter 4711 Fruitdale Ave.
person

r bb

2 John et ColumbiaAve, SWimming — &veling 7 David 4711 Fruitdale Ave.

Figure 1: Data Graph Corresponding to the XML Fragment of Example 2.1.

select (variable-list) where (XML-pattern)™

The where clause is a conjunction of XML-patterns. Each XML-pattern is defined as a tree where the
leaves are labeled with either constants, variables or unary predicates. Edges in the pattern are labeled with
either string constants, variables, unary predicates or regular path expressions constructed using alternation,
concatenation or a Kleene star over the alphabet of strings and the special “_” symbol (underscore) used
to denote so-called wild cards which match every attribute. Furthermore, subpatterns can be marked as

optional.
The query “find all the persons who are older than 18 and live in 4711 Fruitdale Ave., and retrieve their
names with (possibly) their hobbies” would be expressed in XML-QL as follows:

select $n, $h
where <person>
<age> $a </age>
<name> $n </name>
<address> 4711 Fruitdale Ave. </address>
[<hobby> $h </hobby>]
</person>, $a>18
The evaluation of the query results in a table which contains bindings for all the variables used in the query.
The semantic of the language is the natural one: An object in the database will match a pattern if the data
tree rooted at the object matches the required pattern as a prefix and if all the predicates and constant
selections in the pattern are satisfied. With optional edges (enclosed in brackets in the XML-QL syntax),
objects qualify if they do not match that edge or if they match and the corresponding sub-tree matches the
optional sub-pattern. Optional sub-patterns can, themselves, contain optional edges. In our example, the

query returns two tuples [“Peter”, null] and [“Mary”, “painting”].

3 Storing XML Documents in a Relational Database

In this section, we describe alternative mapping schemes that can be used to store an XML document in
a relational database. The starting point is the labeled graph which represents the XML document, as
described in Section 2.2. A mapping scheme determines which tables to create in the relational database,
which indices to construct, and in which tables to store the objects (internal nodes of the graph), attributes
(edges), and values (leaves). Of course, there are many meaningful mapping schemes conceivable for a given
XML document; in fact, indefinitely many. We will concentrate on basic, canonic mapping schemes in this
section, and we characterize these mapping schemes along two dimensions: (a) how to represent attributes,
and (b) how to represent values. Along the first dimension, we discuss four different variants and along the
second dimension, we discuss two alternative schemes, resulting in overall eight mapping schemes. (We will

assess five of these mapping schemes as part of our performance evaluation in Section 5.)

3.1 Mapping Attributes
3.1.1 The Edge Approach

The simplest scheme is to store all attributes in a single table; let us call this table the Edge table. The
Edge table records the oids of the source and target objects of the attribute, the name of the attribute, a flag
that indicates whether the attribute is an inter-object reference or points to a value, and an ordinal number
used to recover all attributes of an object in the right order and to carry out updates if objects have several

attributes with the same name. The Edge table, therefore, has the following structure:
Edge(source, ordinal, name, flag, target)

The key of the Edge table is {source, ordinal}. Figure 2 shows how the Fdge table would be populated for
the example XML document from Section 2.1. The bold faced numbers in the target column (i.e., 3 and
4) are the oids of the target objects. The italicized entries in the target column refer to representations of
values. Values cannot be stored in this way, but we put these values into the table for illustration purposes,
and we will discuss alternative ways to represent values for the Edge and other approaches in Section 3.2.
In that section, we will also discuss the role of the flag field, which is not shown in Figure 2.

In terms of indices, we propose to establish an index on the source column and a combined index on the
{name, target} columns. The index on the source column is useful for forward traversals such as needed to
reconstruct a specific object given its oid. The index on {name, target} is useful for backward traversals;
e.g., “find all objects that have a child named John.” We experimented with different sets of indices as part
of our performance experiments (not reported in this paper), and found these two indices to be the overall
most useful ones.

A simple variant of the Edge approach is to store the attribute names in a separate table. We also
experimented with that variant: that variant reduces the size of the database, but it significantly increases
the cost of query processing because the {name, target} index can no longer be established, thereby slowing
down backward traversals dramatically in some cases. We, therefore, will not consider this variant in the

remainder of this paper.

source | ordinal name target
1 1 55
age Anobby Achila
1 2 name Peter . .
. source | ordinal | target source | ordinal | target
1 3 address | Fruit. —
. 2 5 painting 1 4 3
1 4 child 3))
. 3 4 swimming 1 5 4
L > child y 3 5 cyclin 2 4 4
2 1 age 38 yeung
Figure 3: Example Attribute Tables

Figure 2: Example: Edge Table

3.1.2 Attribute Approach

In the second mapping scheme, we propose to group all attributes with the same name into one table. This
approach resembles the binary storage scheme proposed to store semi-structured in [vZAW99]. Conceptually,
this approach corresponds to a horizontal partitioning of the Edge table used in the first approach, using
name as the partitioning attribute. Thus, there we create as many Attribute tables as different attribute

names in the XML document, and each Attribute table has the following structure:
Aname(source, ordinal, flag, target)

The key of such an Attribute table is {source, ordinal}, and all the fields have the same meaning as in the
Edge approach. Figure 3 shows the hobby and child Attribute tables for our example XML document from
Section 2.1. In terms of indices, we propose to construct an index on the source column of every Attribute
table and a separate index on the target column. This is analogous to the indexing scheme we propose to

use for the Edge approach.

3.1.3 TUniversal Table

The third approach we study generates a single Universal table to store all the attributes of an XML
document. This corresponds to a Universal table [Ul189] with separate columns for all the attribute names
that occur in the XML document. Conceptionally, this Universal table corresponds to the result of an outer
join of all Attribute tables. The structure of the Universal table is as follows, if ny,...,n; are the attribute

names in the XML document.
Universal(source, ordinaly, , flag,, , target,,, ordinal,,, flagn,, targety,, ..., ordinal,, , flag,, , targety,)

Figure 4 shows the instance of the Universal table for our example XML document. As we can see in Figure 4,
the Universal table has many fields which are set to null, and it also has a great deal of redundancy; the

value Peter, for instance, is represented twice because Object 1 has a multi-valued attribute (i.e., child).

source | ... 0rdname | taTgname | --- ordchild | targehild | 0rdnobby targnobby
1 .. 2 Peter - 4 3 null null
1 2 Peter - 5 4 null null
2 2 Mary e 4 4 5 painting
3 2 John .. null null 4 swimming
3 2 John .. null null 5 cycling
4 2 David S null null null null

Figure 4: Example Universal Table

source | | ordname | flagname | targname | | ordnobby | flagnobby | targhobby

1 2 - Peter ... null null null Overflownobby
L source | ord | target
2 2 - Mary o 5 - painting 3 1 Sl A
3 2 - John . 4 m null) ‘ : 5wzm;nmg
4 2 - David | ... null null null cycling

Figure 5: Example UnivNorm and Overflow Table

Putting it differently, the Universal table is denormalized—with all the known advantages and disadvantages
of such a denormalization. Corresponding to the indexing scheme of the Attribute approach, we propose to

establish separate indices on the source and all the target columns of the Universal table.

3.1.4 Normalized Universal Approach

The fourth approach, the UnivNorm approach, is a variant of the Universal table approach. The difference
between the UnivNorm and Universal approach is that multi-valued attributes are stored in separate Quer-
flow tables in the UnivNorm approach. (This corresponds to the way that object-relational databases like
Oracle 8 would store multi-valued attributes.) For each attribute name that occurs in the XML document
a separate Quverflow table is established, following the principle of the Attribute approach.? This way, there
is only one row per XML object in the UnivNorm table and that table is normalized. The structure of the
UnivNorm table and the Overflow tables is as follows, if n1,...,ng are all the attribute names in the XML

document:

UnivNorm(source, ordinal,,, , flagy, , target,, , ordinal,, , flagn, , targets,, ..., ordinal,, , flagn, , targety,)

Overflowy,, (source, ordinal, flag, target), ..., Overflowy,, (source, ordinal, flag, target)

The key of the UnivNorm table is source. The key of an Overflow table is {source, ordinal}. If an attribute
is single-valued, the flag field indicates whether the attribute refers to another object or a value, as in all
the other approaches. If the attribute is multi-valued, the flag field is set to “m” to indicate this fact. If
the object has not got an attribute with that name, the flag field is naturally set to null. Figure 5 shows
the UnivNorm table and the hobby Overflow table for our example XML document. Again, we propose to
establish separate indices on the source and all the target columns of the UnivNorm table as well as on the

source and target columns of all the Querflow tables.

3.2 Mapping Values

We now turn to alternative ways to map the values of an XML document (e.g., strings like “Mary” or “4711
Fruitdale Ave.”). We study two variants in this work: (a) storing values in separate Value tables; (b) storing
values together with attributes. Both variants can be used together with the Edge, Attribute, Universal, and
UnivNorm approaches, resulting in a total of eight possible mapping schemes. (In Section 5, however, we

will only assess five of these eight mapping schemes for brevity.)

2An alternative would be to establish a single Overflow table for all multi-valued attributes and organize that Overflow
table in the same way as the Edge table. We experimented with such an approach and found it to be inferior.

Edg@ Vint ‘/String

source | ordinal name flag target vid | value vid value
1 1 age int vl vl 55 v2 Peter
1 2 name | string v2 v4 38 v3 | 4711 Fruitdale Ave.
1 3 address | string v3 v8 22 vh Mary
1 4 child ref 3 v13 7 v6 | 4711 Fruitdale Ave.
1 5 child ref 4 v7 painting
2 1 age int v4 . .
v15 | 4711 Fruitdale Ave.

Figure 6: Example: Edge Table with Separate Value Tables

3.2.1 Separate Value Tables

The first way to store values is to establish separate Value tables for each conceivable data type. There
could, for example, be separate Value tables storing all integers, dates, and all strings.®> The structure of
each Value table would simply be as follows, where the type of the value column depends on the type of the
Value table:

Viype(vid, value)

Figure 6 shows how this approach would be combined with the Edge approach, completing our example of
Figure 2. The vids of the Value tables are generated as part of an implementation of the mapping scheme.
The flag column in the other tables now indicates in which Value table a value is stored; a flag can, therefore,
take values such as integer, date, string, or ref indicating an inter-object reference. In the very same way,
separate Value tables can be established for the Attribute, Universal, and UnivNorm approaches. In terms
of indices, we propose to index the vid and the value columns of the Value tables.

Looking closer at Figure 6, we observe that the value “4711 Fruitdale Ave.” is stored three times in the
string value table. The reason is that this value occurs three times in the original XML document and in
the labeled graph that represents that document. Of course, it would be possible to find a more compact
mapping of the original XML document by storing such strings only once, but such an approach would
severely complicate the implementation of updates (e.g., it would require reference counting and garbage
collection). We, therefore, will not study such a compact representation in this paper. After all, the author
of the XML document could have established a separate address object which is referenced by the Peter,
Mary, and David objects in order to get a compact representation and model that Peter, Mary, and David

live at the same place.

3.2.2 Inlining

The obvious alternative is to store values and attributes in the same tables. In the Edge approach, this
corresponds to an outer join of the Fdge table and the Value tables. (Analogously, this corresponds to outer
joins between the Attribute, Universal, UnivNorm, and Overflow tables in the other approaches.) Hence, we
need a column for each data type. We refer to such an approach as inlining. Figure 7 shows how inlining

would work for the Attribute approach. Obviously, no flag is needed anymore, and a large number of null

3As stated in Section 2.2, XML currently does not differentiate between different data types, but there are several standard
proposals to extend XML in this respect.

Anobby Achila

source | ord | valint | valstring | target source | ord | valing | valstring | target
2 5 null painting null 1 4 null null 3
3 4 null | swimming | null 1 5 null null 4
3 5 null cycling null 2 4 null null 4

Figure 7: Example: Attribute Tables with Inlining

values occur. In terms of indexing, we propose to establish indices for every wvalue column separately, in
addition to the source and target indices.

An alternative to the representation with one value column for each data type would be to establish a
single value column that stores all values as strings, the most general type. In such a scheme, all values
would be converted to strings (e.g., 7 would be represented as “7”). Such an approach, however, would make

it impossible to use an index in order to find all objects with 5 < age < 22.

3.3 Other Mapping Schemes

As stated at the beginning of this section, there are, of course, many other mapping schemes conceivable.
There are even many variants of the eight simple mapping schemes presented in the previous two sections
conceivable; e.g., one or several Querflow tables in the UnivNorm approach or hybrid approaches such as
establishing Attribute tables for frequent attributes and storing all the other attributes in an Edge table,
or inlining small values (e.g., integers) and storing large values (e.g., text) in separate value tables. In the
following, we will name just a few other mapping schemes that have been addressed in the literature or which

we have heard of in discussions.

e Selective Outer Joins of Attribute tables: as a compromise between the Attribute and Universal ap-
proach, it is possible to, say, store child and hobby attributes in separate Attribute tables and to store
name, age, address in a single, combined table; that is, to use Aname M Aage X Aaddress instead of
the individual Attribute tables. This approach is, of course, attractive if most objects that have a
name also have an age and an address, if each of these attributes only occur once per object, and if
queries that involve these objects typically ask for two or all three of these attributes. As stated in the
introduction, models and algorithms to extract such information have been proposed in the literature,

and we will discuss some of the tradeoffs of such an approach in Section 5.8.

o Selective Joins of Attribute tables: rather than storing Aname X Aage X Aaddress, this variant would
store Aname ™M Aage M Aaddress- In addition, Overflow tables need to be established in order to store the
information of objects that have, say, a name and age, but no address. Materializing joins is attractive
if queries ask for all attributes whereas outer joins are also attractive if queries just ask for subsets of
the attributes. Some of the related theory of materializing joins and outer joins has been developed in

the context of access support relations [KM92].

e Redundancy: just as in any other database, materialized views can be established in order to speed
up the execution of queries. Finding the right views to materialize has been an active research area in
the context of data warehouses [HRU96, TS97]. It is likely to be at least as difficult in the context of
mapping XML documents.

10

4 Query Processing and Updates

In this section, we will discuss some of the details of implementing queries and updates with the alternative
mapping schemes. Going into the full details is beyond the scope of this paper so that we will concentrate
on a brief overview of the kinds of operations that are involved in order to implement queries posed in an

XML query language or to propagate updates carried out on the original XML document.

4.1 Queries

The overall approach is to translate an XML query into SQL, let the RDBMS execute the query, and do some
postprocessing in order to get the right query result (e.g., generate XML if this is requested by the query).
All three of these steps can be carried out in a straightforward way, but of course the most interesting step
is the translation into SQL. To get a flavor for what the generated SQL looks like, and thus, what kinds of
operations the RDBMS must carry out, we will characterize the generated SQL for different categories of

queries and the alternative mapping schemes. We will give performance results in Section 5.

Reconstructing Objects of the XML Document One very important type of query is to reconstruct
an object of the XML document, given the object’s oid (i.e., get all attributes of the object without computing

the transitive closure). Such a simple query can be executed as follows for each mapping scheme:

e FEdge/separate Value tables: a simple (indexed) lookup by source on the Edge table followed by an
(indexed) join with the Value tables

o Attribute/separate Value tables: an (indexed) lookup by source on all Attribute tables; take the union

of the results produced by these lookups and join with the Value tables

e Universal /separate Value tables: an indexed lookup by source on the Universal table; take the union

of all target columns and join that with the Value tables

e UnivNorm/separate Value tables: combination of what is done for the Universal and Attribute ap-

proaches for the UnivNorm and Overflow tables, respectively

e inlining: simple (indexed) lookups on the Fdge, Attribute, Universal, UnivNorm, and Overflow tables;

joins with Value tables are not necessary.

In all mapping schemes, sorting by ordinal is required at the end, if this is required by the semantics of the
query. If the query involves reconstructing more than one object, in addition, sorting by source is required

so that the resulting objects can easily be re-grouped.

Selections on Values and Pattern Matching Queries that involve a selection on a value can also be
translated into SQL queries in a straightforward way; as an example, consider a query that asks for the
oids of objects that have swimming as a hobby. In the inline variants, such a query can be executed by
a simple (indexed) lookup of the appropriate value column in the Edge, Anobby, Universal, UnivNorm, or

Overflownobby tables. If values are stored in separate tables, such a query involves an (indexed) lookup of

11

the appropriate Value table and a join with the Edge table, the Anonby table, the Universal table, or the
UnivNorm and Overflownobby tables.

If the query involves two predicates, then additional joins are necessary in the Edge, Attribute, and
UnivNorm approaches. If, for instance, a user is interested in the oids of all objects that have swimming as a
hobby and age 35, then executing this query would involve a self-join of the Fdge table in the Fdge approach,
an Anobby X Aage join in the Attribute approach, and a union of UnivNorm U (UnivNorm X Overflownobby)
U (UnivNorm X OQuerflowage) U (Overflownobby X Overflowage) in the UnivNorm approach. The Universal
approach materializes the results of theses kinds of joins so that such joins are not necessary in the Universal
approach.

Query languages like XML-QL make it also possible to pose queries that ask for a specific pattern. Just
like the XML document itself, the WHERE clause of an XML-QL query can be interpreted as a graph (see
Section 2.3). In general, evaluating a query in the Fdge, Attribute and UnivNorm approaches involves the
execution of an e-way join (in addition to possibly joins with Value tables), where e is the number of edges
in the pattern. Evaluating a query in the Universal approach involves the execution of an n-way join (in

addition to joins with Value tables), where n is the number of nodes in the pattern, and n < e.

Optional Predicates As a result of the irregularity of the data, XML query languages also allow to pose
queries with optional predicates as in: find all objects that are 35 years old and have swimming as a hobby,
if they have a hobby. Such a query can be translated for all approaches into a SQL union query that asks
(a) for all objects that are 35 years old and have swimming as a hobby, and (b) for all objects that are 35

years old and have no hobby. (Note that no duplicate elimination is required as part of this union.)

Predicates on Attribute Names Another common feature of most XML query languages is the capa-
bility to support queries with predicates on attribute names. An example would be a query that asks for
objects that have an address or street with value “4711 Fruitdale Ave.” In the Edge approach, such queries
can easily be translated into SQL by adding a predicate on the Edge.name column; e.g., name = ’address’
or name = ’street’. In all other approaches, the translation of such a query involves an initial step in
which the schema of the relational database is queried in order to find all the relevant Attribute and Quer-
flow tables and/or the relevant fields of the Universal and UnivNorm tables. Doing so is possible because
information about table and attribute names is stored in special, user-readable tables in most commercial

database products.

Regular Path Expressions XML query languages also support regular path expressions that make it
possible to navigate through irregular or unpredictable structures and ask for the transitive closure of objects;
e.g., find all ancestors of John. Such queries can be translated into recursive SQL queries in a straightforward

way. (If the RDBMS does not support recursive SQL queries, such queries need to be unrolled step by step.)

4.2 Updates

Updates to an XML document can also be propagated to the relational database in a straightforward way.

Typically, a series of SQL insert, update, and/or delete statements are required to propagate an update. In

12

the following, we will briefly discuss insertions and deletions of objects and attributes.

Inserting New Objects Objects can very easily be inserted in all mapping schemes. In the Edge and
Attribute approaches, one row is generated for each attribute of the new object. In the Universal approach,
the number of new rows depends on the presence of multi-valued attributes: if the object has no multi-valued
attributes, exactly one row is inserted for the new object into the Universal table; if the object has, say,
two multi-valued attributes with cardinality three and five, then fifteen new rows are generated. In the
UnivNorm approach exactly one row is inserted into the UnivNorm table and m rows are inserted into the
corresponding Overflow table for a multi-valued attribute with cardinality m. If values are stored in separate
Value tables, then of course, a row must be inserted into those Value tables for each value of the new object.
If the new object contains new attribute names, then the Universal and UnivNorm tables must be extended,

and new Attribute and Querflow tables must be created.

Inserting New Attributes Adding an attribute to an existing object is again simple and straightforward
in the Edge and Attribute approaches and slightly more complicated in the other two schemes to map
attributes. In the Universal and UnivNorm approaches, different cases must be differentiated; depending on
the presence of multi-valued attributes in the object and the existence of another attribute with the same
name as the new attribute, new rows must be generated or the tables must be updated. In all cases, the
insertion of a new attribute may involve updating the ordinal’s of the attributes that belong to the same
object and are located behind the new attribute in the XML document. (This procedure can be simplified
in certain cases if we do not consider ordered semantics; see Section 2.2.) If values are stored in separate
Value tables and the new attribute contains a value, then of course, the corresponding Value table must be
updated. Also, if the name of the new attribute is novel, then the same measurements as for new objects

with new attribute names must be made in the Attribute, Universal, and UnivNorm schemes.

Deleting an Object In all approaches, objects can easily be deleted by deleting the corresponding rows
from all tables. If values are stored in separate Value tables, then an object must be read before it is deleted

in order to find the object’s values which must be deleted from the Value tables.

Deleting an Attribute Deleting an attribute from an object is, again, very simple to implement for the
Edge and Attribute approaches and it involves looking at different cases for the Universal and UnivNorm
approaches (analogous to inserts). In all approaches, deleting an attribute may involve reorganization of the
ordinal values. Furthermore, in all approaches that use separate Value tables, the attribute must be read

first in order to find whether the attribute contains a value which must be deleted, too.

5 Evaluating the Mapping Schemes

5.1 Plan of Attack

In order to study the tradeoffs of the alternative mapping schemes we carried out a series of performance

experiments. We study, in particular, the size of the resulting relational database for each mapping scheme,

13

the time to bulkload the relational database given an XML document, the time to reconstruct the XML
document from the relational data, the time to execute different classes of XML queries, and the time to
execute different kinds of update functions.

All experiments are carried out using a synthetic XML document as a starting point. While real XML
data is already available to some extent?, it is unclear what the characteristics of a typical XML document
would be. Rather than using real XML data or generating an XML document that would resemble real XML
data, we use an XML document that allows us to specifically study the tradeoffs of the mapping schemes
and we only model certain characteristics that can be found in real XML data (e.g., the presence of large
text fields).

To simplify the discussion, we will only present experimental results for five of the eight alternative
mapping schemes described in Section 3. We will study the Edge, Attribute, Universal, and UnivNorm
approaches with separate Value tables in order to study the tradeoffs of the different ways to map attributes.
In addition, we will study the Attribute approach with inlining in order to compare inlining and the separate
Value tables variants.

As an experimental platform, we use a commercial relational database system® installed on a Sun Sparc
Station 20 with two 75 MHz processors and 128 MB of main memory and a disk that stores the database
and intermediate results of query processing. The machine runs on Solaris 2.6. In all our experiments, we
limited the size of the main memory buffer of the database to 6.4 MB, which was less than a tenth of the
size of the XML document. Other than that, we use the default configuration of the database system, if
not stated otherwise. (For some experiments, we used non-default options for query optimization; we will
indicate those experiments when we describe the results.) All software which runs outside of the RDBMS
(e.g., programs to prepare the XML document for bulkloading or implementations of the update functions) is
implemented in Java and runs on the same machine. Calls to the relational database from the Java programs

are implemented using JDBC.

5.2 Benchmark Specification
5.2.1 Benchmark Database

The characteristics of the synthetic XML document we generate for the performance experiments are de-
scribed in Table 1. The XML document consists of n objects. Each object has 0..f, attributes containing
inter-object references and 0..f, attributes with values. The document is flat; that is, there is no nesting of
objects. (Given our XML data model described in Section 2.2, flat documents with references have the same
semantics as documents with nested objects.) All attributes are labeled with one of d different attribute
names; we will refer to these names as aq,...,aq, but in fact each name is [bytes long. There are two types
of values: short strings with s bytes and long texts with ¢ bytes. p;% of the values are strings and p;% of
the values are text. We use a uniform distribution in order to select the number of attributes for each object
individually and to to determine the objects referenced by an object and the name of every attribute. The

graph that represents the XML document contains cycles, but this fact is not relevant for our experiments.

4See, e.g., www.oasis-open.org/cover/xml.html.
5Qur licenses agreement does not allow us to publish the name of the database vendor.

14

n | 100,000 | number of objects

fn 4 maximum number of attributes with inter-object references per object
fo 9 maximum number of attributes with values per object

s 15 size of a short string value [bytes]

t 500 size of a long text value [bytes]

Ds 80 percent of the values that are strings

Dt 20 percent of the values that are text

d 20 number of different attribute names

l 10 size of an attribute name [bytes]

Table 1: Characteristics of the XML Document

Since the XML document contains values of two different data types (string and text), two Value tables
are generated in the relational database for the mapping schemes without inlining and two value columns
are included in the Attribute scheme with inlining. We index the strings completely, as proposed in Sec-
tion 3.2, but we do not index the text (for obvious reasons), deviating from the proposed indexing scheme of
Section 3.2. Strings and text, as well as attribute names (in the Edge table) are represented as varchars in
the relational database. flags are represented as chars, and all other information (e.g., oids, vids, ordinals,
etc.) is represented as number (10,0).

The parameter settings we use for our experiments are also shown in Table 1. We create a database
with 100,000 objects. Each object has, on an average, two attributes with inter-object references and 4.5
attributes with values. So, we have a total of approximately 450,000 values; 90,000 texts of 500 bytes and
360,000 short strings of 15 bytes.

5.2.2 Benchmark Queries

Table 2 describes the XML-QL query templates that we use for our experiments. The XML-QL formulation
for these queries is given in the appendix of this paper. These query templates test a variety of features
provided by XML-QL, including simple selections by oid and value, optional predicates, predicates on at-
tribute names, pattern matching, and regular path expressions. In all, we test fifteen queries as part of
our benchmark. We test each of the Q2 to Q8 templates in two variants: one light variant in which the
predicates are very selective so that index lookups are effective and intermediate results fit in memory, and
one heavy variant in which the use of indices is typically not attractive and intermediate results do not fit
into the database buffers. Specifically, we set the predicates on a; to select 0.1% of the values in the light
query variants and to select 10% of the values in the heavy variants. The predicates on ay are always set
to select 30% of the values. All predicates involve strings only (no text). For our benchmark database, the
size of the result sets for each of these fifteen benchmark queries is listed in Table 3. How the queries are
translated into SQL queries for each mapping scheme is outlined in Section 4.1: of course, the XML-QL to
SQL translation does not depend on the selectivity of the predicates, and we made sure that the translation
is correct for each mapping scheme by checking the results produced by every query.

To get reproducible experimental results, we carry out all benchmark queries in the following way: every
query is carried once to warm up the database buffers and then at least three times (depending on the query)
in order to get the mean running time of the query. Warming up the buffers impacts the performance of

the light queries that operate on data that fits in main memory; warming up the buffers, however, does not

15

Query | Description Feature

Q1 reconstruct XML object with oid =1 select by oid

Q2 find objects that have attribute a; with value in certain range select by value

Q3 find objects that have attributes a1 and as with certain values two predicates

Q4 find objects that have a; and a2 with certain value or just a; with certain value | optional predicate

Q5 find objects that have a; or az or az with certain value predicate on attribute name

Q6 find object that match a complex pattern with seven references and eight nodes pattern matching

Q7 find all objects that are connected by a chain of a; references regular path expression
to an object with a specific a; value

Q8 find all objects that are connected by a chain of a1 or as references regular path expression with
to an object with a specific a; or az value a predicate on the attribute name

Table 2: Benchmark Query Templates

Ql | Q2L | Q2H | Q3L | Q3H | Q4L | Q4H | Q5L | Q5H | Q6L | Q6H | Q7L | Q7H | Q8L | Q8H
9 | 11 | 1805 | 3 | 131 | 9 | 1386 | 50 | 5556 | 1 3 11 | 2309 | 37 | 4616

Table 3: Size of Result Sets of Benchmark Queries

impact the results of the heavy queries.

5.2.3 Update Functions

As part of our benchmark, we carry out four update functions which are described in Table 4. These four
update functions test the insertion and deletion of whole objects and individual attributes. The new objects
have the same characteristics as the other objects of our database and the new attributes contain 15-byte
strings with 80% probability and 500-byte text with 20% probability. The implementation of the update
functions for each mapping scheme is described in Section 4.2. The update functions do not insert XML
attributes with new attribute names so that no new Attribute or OQverflow tables need to be created and
the Universal and UnivNorm tables need not be altered as part of executing the update functions. The
database product we used for our experiments, carries out these kinds of operations very quickly; in general,
however, the cost of such operations strongly depends on the implementation of the RDBMS, and we were
not interested in such particularities of an RDBMS. We carry out these four update functions in sequential

order and only once.

5.3 Database Size

Table 5 shows the size of the XML document and of the resulting relational database for each mapping
scheme. The size of the XML document is about 80 MB, and we see that even without indices every
mapping scheme produces a larger relational database. Even the Attribute and UnivNorm approaches result
in more than 80 MB of base data, although they store every attribute name only once (as part of the schema)
whereas every attribute name (of 10 bytes) occurs approximately 32,500 times (650,000 attributes divided by
20 different names) in the XML document. The Edge approach, like the XML document, stores every name

multiple times and, therefore, produces more base data than the Attribute and UnivNorm schemes. Recall

Ul | generate 100 new objects; commit after every new object

U2 | insert 1000 new attributes into randomly selected objects; commit after every new attribute
U3 | delete 1000 random attributes form random objects; commit after every attribute

U4 | delete 100 random objects; commit after every object

Table 4: Update Functions

16

from Section 3.1 that a variant of the Fdge approach that stores the attribute names in a separate table would
result in a smaller relational database (overall reduction of about 15 MB in our benchmark), but it would
also result in significantly increased query response times. The Universal approach, of course, produces the
most base data because the Universal table is denormalized as described in Section 3.1. Comparing the
Attribute approach with and without inlining, we see that inlining results in a smaller relational database:
no vids are stored in the inline variant and nwulls which are produced by the inline variant are stored in a
very compact way by our RDBMS. Looking at the size of the indices, we can see that indices can consume

up to 40% of the space.

XML | Attribute | Edge | Universal | UnivNorm | Attr.+Inline
base data | 79.2 1052 [1223 | 1389 109.7 86.9
indices - 71.1 85.6 76.7 49.3 52.7
| total | 792 [1763 [207.9] 2156 | 159.0 | 139.6

Table 5: Database Sizes [MB]

5.4 Bulkloading Times

Table 6 shows the time it takes to prepare the XML document for bulkloading, do the actual bulkloading,
and analyze the resulting tables and create indices for each mapping scheme. There are no surprises.
Obviously, bulkloading takes the longest for the Universal approach because this approach is complicated

by the denormalization of the data and because this approach produces the most relational data.

Attribute Edge | Universal | UnivNorm | Attr.+Inline
prepare 5m 50s Tm 1s 13m 3s 7m 40s 4m 30s
bulkload 26m 22s | 26m 51s 47m 49s 23m 54s 25m 20s
analyze/indices 9m 26s | 13m 43s 11m 35s 12m 39s 9m 20s

| total | 41m 37s | 47Tm 35s [1h 2m 27s [44m 13s | 39m 10s |

Table 6: Bulkloading Times

5.5 Reconstructing the XML Document

Table 7 shows the overall time to reconstruct the XML document (and write it to disk) from the relational
data for each mapping scheme. In all cases, it takes more than 30 minutes, and this fact is probably the most
compelling argument against the use of RDMBSs to store XML data. As stated in Section 4.1, all mapping
schemes need to sort by oid in order to re-group the objects, and this sort is expensive in our environment (it
is an 80 MB sort with 6.4 MB of memory). The disastrous running times for the Universal and UnivNorm
approaches with separate Value tables can also be explained. The Universal and UnivNorm tables must be
scanned d = 20 times (once for each attribute name) in order to restructure the data and carry out the joins

with the Value tables.

Attribute Edge Universal | UnivNorm | Attr.+Inline |
56m 52s | 40m 56s | 1h 41m 17s | 1h 50m 58s 32m 8s |

Table 7: Reconstructing the XML Document

17

Attribute Edge | Universal | UnivNorm | Attr.+Inline
Q1 0.036 0.023 0.074 0.115 0.024
Q2(I) | 0.104/4.6 | 0.089/5.3 | 0.093/4.8 | 0.139/9.6 0.011/5.3
Q2(h) 15.7 83.0 62.1 31.0 0.644/5.5
Q3() 6.0 5.1 5.8 100.6 2.0
Q3(h) 15.8 133.7 70.5 150.5 3.5
Q4(1) 12.3 9.9 11.7 108.0 4.1
Q4(h) 32.0 255.7 132.9 2015 6.7
Q5(1) 0.277/15.4 5.1 14.2 28.2 0.028/13.9
Q5(h) 48.6 148.1 185.8 169.4 14.8
Q6(1) | 0.130/6.5 6.1 | 0.141/6.3 248.0 0.017/2.0
Q6(h) 17.0 123.7 63.7 256.9 3.3
Q7(1) 0.111/6.2 | 0.101/5.4 | 0.096/6.2 49.9 0.012/5.3
Q7(h) 16.8 221.5 62.7 57.0 1.060/6.6
Q3() 183 5.0 91.4 50.4 32.7
Qs(h) 472 392.0 206.9 152.1 36.3

Table 8: Running Times of the Queries [secs]|; Tuned /Untuned

5.6 Running Times of the Queries

Table 8 shows the running times of our fifteen benchmark queries for each mapping scheme. In most cases,
the optimizer of the RDBMS found good plans with the default configuration. In some cases, however, we
were able to get significant improvements by using a non-default configuration; for such cases, Table 8 shows
the running times obtained using the untuned (default) optimizer configuration and the tuned optimizer
configuration. Most of the improvements were achieved for light queries and by forcing the optimizer to use
indices instead of table scans and index nested-loop joins instead of hash or sort-merge joins.

In all, we can make the following two observations:
e Of all the alternative ways to map attributes, the Attribute approach is the winner.
e Inlining clearly beats separate Value tables.

Both of these results can be explained fairly easily. The Edge approach performs poorly for heavy queries
because joins with the (large) Edge table become expensive in this case; in effect, most of the data in the
Edge table is irrelevant for a specific query. For the same reason, the Universal approach with its very
large Universal table performs poorly for heavy queries. In the Attribute approach, on the other hand, only
relevant data is processed. The same kind of benefits of a binary table approach have been observed in
the Monet project for (structured) TPC-D data [BWK98]; for XML data the benefits are particularly high.
The UnivNorm approach is less sensitive towards the size of intermediate query results, but the UnivNorm
approach often does the same work twice: once for the UnivNorm table and once for the Ouverflow tables.
The UnivNorm approach, therefore, performs poorly in almost all cases. Explaining the differences between
inlining and separate Value tables is even easier: inlining simply wins because it saves the cost of the joins
with the Value tables. The results show that inlining beats separate Value tables even if very large values
(such as text) are inlined.

Q8(1) and to some extent Q1 and Q5(1) are exceptions to the above rules. These three queries involve
a predicate on the attribute names (Q5 and Q8) or a wild card (Q1), and the Edge approach is attractive

for such queries because such predicates can directly be applied to the Edge table whereas executing such

18

Function Attribute | Edge | Universal | UnivNorm | Attr.+Inline
Ul | creating objects 12.0 11.5 12.5 9.5 10.3
U2 | inserting attributes 67.8 51.5 332.1 131.8 47.3
U3 | deleting attributes 429 | 89.6 109.4 106.5 42.3
U4 | deleting objects 28.5 8.0 25.2 44.1 14.9

Table 9: Running Times of the Update Functions [secs]

predicates involves a separate “querying the schema” step and the generation of a SQL UNION query for the

other mapping schemes.

5.7 Running Times of the Update Functions

Table 9 shows the running times of the four update functions of our benchmark for each mapping scheme.

Again, there are no surprises, and we would just like to point out the most important effects:
e The cost of creating new objects (U1) is fairly much the same for all mapping schemes.

e Inserting new attributes (U2) is significantly more expensive in the Universal and UnivNorm ap-
proaches than in the other approaches because more update and insert statements must be executed
for these approaches (Section 4.2). In the Universal approach, this is a result of the denormalization
of the data. In the UnivNorm approach, this is a result of the complicated organization which makes
it necessary to move attributes from the UnivNorm to an Querflow table if a single-valued attribute is

turned into a multi-valued attribute (e.g., if Mary gets a second hobby).

e For the same reason, the deletion of attributes (U3) is most expensive in the Universal and UnivNorm

approaches.

o Deleting whole objects (U4) is cheapest in the Edge approach; here, only three statements must be
carried out: (a) probe the Fdge table to detect the values that must be deleted from the Value tables;
(b) delete those values from the Value tables; and (c) delete the relevant rows from the Edge table.
Deleting objects in the Attribute approach (with or without inlining) is more expensive because it
involves separate SQL (select and delete) statements for every Attribute table, plus, maybe, for the
Value tables. In the Universal approach without inlining, the same kind of overhead occurs: every
target column must be probed separately in order to find the values that must be deleted. In the
UnivNorm approach without inlining, this kind of overhead is carried out twice: (a) probe the target

columns of the UnivNorm table, and (b) probe the relevant Overflow tables.

5.8 Experiments with Other Mapping Schemes

In all, we experimented with many different mapping schemes as part of our work, and decided to present
only the most relevant results in this paper. As promised in Section 3.3, however, we do want to show what
happens if we materialize the outer join of two Attribute tables, with and without inlining, in our particular
benchmark with highly irregular data. Such a mapping scheme could, for instance, be recommended by

an algorithm that extracts schema. For these experiments, we materialize A; X Ay (instead of separate

19

Separate Value Tables Inlining

Aq, As A1 M A, A1, Ay | A1 XA,
Q3(h), anticip. 16.2 15.3 3.1 3.1
Q4(h), anticip. 32.6 32.3 6.7 3.1
Q3(h), unanticip. || 16.1 15.8 3.1 6.2
Q4(h), unanticip. || 32.0 32.8 7.0 44.1

Table 10: Materializing the Outer Join of Two Attribute Tables [secs]

Attribute tables for A; and As) and run Q3(h) and Q4(h). Both of these queries only operate on the a;
and ay attributes. So, these queries are anticipated, and materializing A; X A, should help for these queries
because it saves the cost of joining the individual Attribute tables. We also run unanticipated variants
of Q3(h) and Q4(h). These variants operate on the a; and a3 attributes so that materializing A; X As
does not help because a join with A3 is needed. Table 10 shows the results of running the anticipated and
unanticipated variants of Q3(h) and Q4(h) using a table that materializes A; X A, with and without inlining.
As a baseline, Table 10 also shows how the simple Atéribute schemes (with and without inlining) perform

for these queries (denoted as {A;, A2}). We can make the following observations:

o if values are stored in separate tables, {A;, A2} and A; X A, show essentially the same performance in
all cases. The cost of query processing is dominated by the joins with the Value tables so improvements

in storing the references do not result in a noticeable speed-up.

e if values are inlined, materializing A; X As helps in the anticipated case (more than a factor of two
for Q4(h)) for saving the join which does dominate the cost in this case, but it looses significantly in
the unanticipated case. The reason is that in the unanticipated case the join with A3 becomes more

expensive because A; X A, is much larger than just A;.

6 Conclusions

We studied the performance of (standard) relational databases for the purpose of managing XML documents.
Relational databases have many important advantages: One, RDBMS products are mature and scale very
well. Two, traditional (structured) data and semi-structured data can co-exist in a relational database, mak-
ing it possible to develop applications that use both kinds of data with virtually no extra effort. Three, our
experiments showed that RDBMSs are able to process even complex XML queries on large databases within
seconds; it is unlikely that the same query performance can be achieved today with any other commercially
available technology. On the negative side, our experiments showed that it is very expensive to reconstruct
the original XML data from the relational data and that updates are both complicated and expensive to
implement in certain cases. Also, extra effort must be made to translate XML queries and updates into SQL
when using a relational database; in the mapping schemes we considered in this work, this translation is both
easy to implement and cheap to execute, but this translation can become very complex if more sophisticated
mapping schemes are used (e.g., such as those proposed in [DFS]). Another potential disadvantage, which we
did not address in this work, is that components such as authorization and concurrency control need to be

implemented outside of the RDBMS because the corresponding built-in components of the RDBMS do not

20

work properly since they require fully structured data. The result is that the same kind of functionality is
implemented (and possibly executed twice) and a great deal of the functionality implemented in the RDBMS
is not used.

We also studied alternative ways to store XML data in a relational database. Our experimental results
clearly show that an approach which is based on separate Attribute tables for every attribute name that
occurs in an XML document and inlining of values into these Attribute tables is the best overall approach.
Even large values (e.g., text) can be inlined without significantly hurting the performance of this approach.
Ideally, of course, it is desirable to make flexible decisions about what kind of data to inline and to keep
information of certain attributes in a single table, using statistics of the XML document and knowledge
of the anticipated query workload. Our results, however, are encouraging because they show that robust
performance can be achieved with a much simpler approach. Also, our results show that sometimes a more
sophisticated approach can hurt more than it helps.

There are several avenues for future work. Our results are only one initial step in order to answer the big
overall question whether to use relational systems, object-oriented systems, or special-purpose data stores to
manage XML documents. So, we plan to run our benchmark on an OODBMSs and on special-purpose XML
data repositories as well. Furthermore, our benchmark can be used to decide which is the best relational
database product for the specific purpose of storing XML documents, and we are going to put all the details
and the software of our benchmark on the web. In addition, our results encourage further work on the

efficient implementation of binary data models [CK85, BWK98].

References

[Abi97] Serge Abiteboul. Querying semi-structured data. In Proc. of the Int. Conf. on Database Theory (ICDT),
Delphi, Greece, 1997.

[AQM™97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet Wiener. The Lorel query
language for semistructured data. International Journal on Digital Libraries, 1(1):68-88, April 1997.

[BDFS97] Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. Adding structure to unstructured
data. In Proc. of the Int. Conf. on Database Theory (ICDT), Delphi, Greece, 1997.

[BDHS96] P.Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and optimization techniques for
unstructured data. In Proc. of ACM SIGMOD Conf. on Management of Data, pages 505-516, Montreal,
Canada, 1996.

[Bos99] Adam Bosworth. XML and semi-structured data. Workshop on Query processing for semistructured data
and non-standard data formats, 1999.

[Bun97] Peter Buneman. Semistructured data. In Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pages 117-121, Tucson, Arizona, 1997.

[BWK98] P. Boncz, A. Wilschut, and M. Kersten. Flattening an object algebra to provide performance. In Proc.
of Int. Conf. on Data Engineering (ICDE), pages 568-577, Orlando, FL, 1998.

[CACS94] Vassilis Christophides, Serge Abiteboul, Sophie Cluet, and Michel Scholl. From structured documents to
novel query facilities. In Proc. of ACM SIGMOD Conf. on Management of Data, 1994.

[CCD*99] Stefano Ceri, Sara Comai, Ernesto Damiani, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca.
XML-GL: a graphical language for querying and restructuring XML documents. In Proc. of the Int.
WWW Conf., 1999.

[CK85] G. Copeland and S. Khoshafian. A decomposition storage model. In Proc. of ACM SIGMOD Conf. on
Management of Data, pages 268-279, Austin, TX, May 1985.

[DFF*99] Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. XML-QL: a query language
for XML. In Proc. of the Int. WWW Conf., 1999.

21

[DFS]

[FFK198]

[FFLS97]
[FLS97]

[GW97]

[HRU96]
[KM92]
[KSW95]

[Lot98]
[MAG™97]

[Moh99]
[MW97]
[MWAT98]
[NAM9S]

[PGMW95]

[QL98]
[RLS98]
[SDY6]
[SLS93]
[Sucog]
[TS97]
[U1189]
[VZAW99]

[YTU96]

A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with STORED. To appear in
Proc. of ACM SIGMOD Conf. on Management of Data, Philadelphia, PN, 1999.

Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu. Catching the boat with
Strudel: Experiences with a web-site management system. In Proc. of ACM SIGMOD Conf. on Man-
agement of Data, Seattle, WA, 1998.

Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query language for a web-site manage-
ment system. SIGMOD Record, 26(3):4-11, September 1997.

Daniela Florescu, Alon Levy, and Dan Suciu. A query optimization algorithm for semistructured data.
Technical report, Inria, 1997.

Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and optimization in
semistructured databases. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Athens, Greece,
1997.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently. In Proc. of ACM
SIGMOD Conf. on Management of Data, pages 205-216, Montreal, Canada, June 1996.

A. Kemper and G. Moerkotte. Access Support Relations: an indexing method for object bases. Infor-
mation Systems, 17(2):117-146, 1992.

N. Kiesel, A. Schiirr, and B. Westfechtel. GRAS, a graph-oriented (software) engineering database system.
Information Systems, 20(1):21-51, 1995.

http://www.lotusnotes.com/, 1998.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A database management system
for semistructured data. SIGMOD Record, 26(3):54-66, September 1997.

C. Mohan. Lotus Domino/Notes: First semi-structured DBMS of the world. Workshop on Query
processing for semistructured adata and non-standard data formats, 1999.

J. McHugh and J. Widom. Query optimization for semistructured data. Technical Report, Stanford
University, November 1997.

J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman. Indexing semistructured data. Technical
Report, Stanford University, January 1998.

Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Extracting schema from semistructured data.
In Proc. of ACM SIGMOD Conf. on Management of Data, Seattle, WA, 1998.

Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange across hetero-
geneous information sources. In Proc. of Int. Conf. on Data Engineering (ICDE), pages 251-260, Taipei,
Taiwan, 1995.

Proceedings of the WWW Workshop on Query Languages for XML, Boston, MA, December 1998.
http://www.w3.org/TandS/QL/QLI8/cfp.

Jonathan Robie, Joe Lapp, and David Schach. XML query language (XQL), 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

R. Sacks-Davis. The structured information manager: A database system for SGML document. In Proc.
of the Int. Conf. on Very Large Data Bases (VLDB), Bombay, India, 1996.

K. Shoens, A. Luniewski, P. Schwarz, J. Stamos, and J. Thomas. The Rufus system: Information
organization for semi-structured data. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB),
pages 97-107, Dublin, Ireland, 1993.

Dan Suciu. Semistructured data and XML. FODO’98, 1998.

D. Theodoratos and T. Sellis. Data warehous configuration. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 126-135, Athens, Greece, August 1997.

Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, Volumes I, II. Computer Science
Press, Rockville MD, 1989.

R. v. Zwol, P. Apers, and A. Wilschut. Modelling and querying semistructured data with MOA. Workshop
on Query processing for semistructured data and non-standard data formats, 1999.

M. Yoshikawa, O. Ichikawa, and S. Uemura. Amalgamating SGML documents and databases. In Proc.
of the Conf. on Extending Database Technology (EDBT), pages 259-274, Avignon, France, March 1996.

22

A The benchmark queries in XML-QL

Query 1 : Retrieve all the attributes of XML object o1

select $I, $v
where <>
<id >o01 < /id >
< 81> v < /81 >
< /o>

Query 2 : Find objects that have an attribute a1 with a value in a certain range

select $oid, $v
where <>
<id > $oid < /id >
<a; >9%v< /a1 >
< /- >, $v between c; and c2

Query 3 : Find objects that have attribute a1 and a2 with values in certain ranges

select $oid. $vi, $vo
where <>
<id > $oid < /id >
<ai > % < /a1 >
<az > %vs < Jaz >
< /- >, $v1 between c1 and cz, $v2 between c3 and c4

Query 4 : Find objects that have attribute a1 and az with values in certain ranges, or just a1 with a value in a
certain range

select $oid, $v1, $vo
where <>
<id > $oid < /id >
<ai>vi < /a1 >
[<az > va < /az >, $va between c3 and c4]
< /- >, $v1 between c; and ¢,

Query 5 : Find objects that have attribute a1 or az or az with a value in a certain range (regular expression with
disjunction)

select $oid, $v
where <>
<id > $oid < /id >
<a1|a2|a3>v</>
< /- >, $v between c; and c2

Query 6 : Find objects that match a complex pattern with seven references and eight nodes

select $oid, $v1, $va, $vs, $v4, Svs
where <>
< id > $%oid < /id >
<ai>9%vi < /a1 >
< az >
< ag > %v2 < Jag >
< as > %v3 < Jas >
< /a2 >
< agz >
< ag > %vy < Jag >
<ar>8%vs < Jar >
< /as >
< /- >, $v1 between c; and ¢,

23

Query 7 : Find all objects that are connected by a chain of a1 references to an object with an a1 value in a certain
range (Kleene star)

select $oid, $v
where <>
<id > $oid < /id >
<(a)*>%</>
< /- >, $v between c; and c2

Query 8 : Find all objects that are connected by a chain of a1 or as references to an object with an a1 or as value
in a certain range (complex reqular expression)

select $oid, $v
where <>
<id > $oid < /id >
<(ar|a2)*>%v< />
< /- >, $v between c; and c2

24

