
A New Inlining Algorithm for Mapping XML

DTDs to Relational Schemas

Shiyong Lu, Yezhou Sun, Mustafa Atay, Farshad Fotouhi

Department Of Computer Science
Wayne State University

Detroit, MI 48202
{shiyong, sunny, matay, fotouhi}@cs.wayne.edu

Abstract. XML is rapidly emerging on the World Wide Web as a stan-
dard for representing and exchanging data. It is critical to have efficient
mechanisms to store and query XML documents to exploit the full power
of this new technology. While one approach is to develop native XML
repositories that support XML data models and query languages directly,
the other approach is to take advantage of the mature technologies that
are provided by current relational or object-relational DBMSs. There is
active research along both approaches and it is still not clear which one is
better than the other. We continue our effort on the second approach. In
particular, we have developed an efficient algorithm which takes an XML
DTD as input and produces a relational schema as output for storing and
querying XML documents conforming to the input DTD. Our algorithm
features several significant improvements over the shared-inlining algo-
rithm including overcoming its incompleteness, eliminating redundancies
caused by shared elements, performing optimizations and enhancing ef-
ficiency.

1 Introduction

With the trend of increasing amount of XML documents on the World Wide
Web, it is critical to have efficient mechanisms to store and query XML doc-
uments to exploit the full power of this new technology. As a result, various
XML query languages have been proposed such as XML-QL [7], XQL [14], Lorel
[12] and XML-GL [5], and more recently XQuery [6], and XML has become one
of the most active research fields attracting different researchers from various
communities.

Currently, two approaches are being investigated for storing and querying
XML data. One approach is to develop native XML repositories that support
XML data models and query languages directly. This includes Software AG’s
Tamino [2] and eXcelon’s XIS [1], among others. The other approach is to take
advantage of the mature technologies that are provided by current relational
or object-relational DBMSs. The major challenges of this approach include: (1)
XML data model needs to be mapped into the target model such as the relational
model; (2) queries posed in XML query languages need to be translated into ones

in the target query languages such as SQL or OQL; and (3) the query results
from the target database engines need to be published back to XML format.
Recently, Kurt and Atay have performed an experimental study to compare the
efficiency of these two approaches [13]. However, since both approaches are still
under active research and development, it is too early to conclude which one is
better than the other.

Related work. Several mechanisms have been proposed to store XML data in
relational or object-relational databases [8] [10] [16] [11] and publish relational or
object-relational data as XML data [15] [4] [9]. Some of them use XML DTDs [16]
and others consider situations in which DTDs are not available [8] [10] [11].
Two recent evaluations [19] [11] of different XML storage strategies indicate
that the shared-inlining algorithm [16] overperforms other strategies in data
representation and performance across different datasets and different queries
when DTDs are available.

In this paper, we propose a new inlining algorithm that maps XML DTDs
to relational schemas. Our algorithm is inspired by the shared-inlining algo-
rithm [16] but features several improvements over it. We will discuss these im-
provements in Section 3.3.

Organization. The rest of the paper is organized as follows. Section 2 gives a
brief overview of XML Document Type Definitions (DTDs), Section 3 describes
our new inlining algorithm that maps an input DTD to a relational schema in
terms of three steps: (1) simplifying input DTDs (Section 3.1); (2) creating and
inlining DTD graphs (Section 3.2); (3) generating relational schemas (Section
3.3). The section ends with a discussion of the improvements we have made over
the shared-inlining algorithm, which is considered as the best strategy when
DTDs are available [19] [11]. A full evaluation and comparison is underway and
will be presented in the near future. Section 3.4 illustrates the three steps of
our algorithm using a real input DTD, and demonstrates how XML documents
conforming to the DTD can be stored. Finally, Section 4 concludes the paper
and provides some directions for future work.

2 XML DTDs

XML Document Type Definitions (DTDs) [3] describe the structure of XML
documents and are considered as the schemas for XML documents. In this paper,
we model both XML elements and XML attributes as XML elements since XML
attributes can be considered as XML elements without further nesting structure.
A DTD D is modeled as a set of XML element definitions {d1, d2, · · · , dk}. Each
XML element definition di (i = 1, · · · , k) is in the form of ni = ei, where ni is
the name of an XML element, and ei is a DTD expression. Each DTD expression
is composed from XML element names (called primitive DTD expressions) and
other DTD subexpressions using the following operators:

– Tuple operator. (e1, e2, · · · , en) denotes a tuple of DTD subexpressions. In
particular, we consider (e) is a singleton tuple. The tuple operator is denoted
by “,”.

– Star operator. e∗ represents zero or more occurrences of subexpression e.
– Plus operator. e+ represents one or more occurrences of subexpression e.
– Optional operator. e? represents an optional occurrence (0 or 1) of subex-

pression e.
– Or operator. (e1 | e2 | · · · | en) represents one occurrence of one of the

subexpressions e1, e2, · · ·, en.

We ignore the encoding mechanisms that are used in data types PCDATA and
CDATA and model both of them as data type string. The DOCTYPE declaration
states which XML element will be used as the schema for XML documents. This
XML element is called the root element. However, we assume that arbitrary XML
elements defined in the DTD might be selected, inserted, deleted and updated
individually. We define a DTD expression formally as follows.

Definition 1. A DTD expression e is defined recursively in the following BNF
notation where n range over XML element names and e1, · · ·, en range over
DTD expressions.

e ::= string | n | e+ | e∗ | e?
| (e1, · · · , en) | (e1| · · · |en)

where the symbol “::=” should be read as “is defined as” and “|” as “or”.

3 Mapping XML DTDs to relational schemas

In this section, we propose a new inlining algorithm that maps an input DTD
to a relational schema. The algorithm contains the following three steps:

1. Simplifying DTDs. Since a DTD expression might be very complex due to
its hierarchical nesting capability, this step greatly simplifies the mapping
procedure.

2. Creating and inlining DTD graphs. We create the corresponding DTD graph
based on the simplified DTD, and then inline as many descendant elements
as possible to an XML element. In contrast to the shared-inlining algorithm,
our inlining rules eliminate the redundancy caused by shared elements in
the generated relational schema and can deal with arbitrary input DTDs
including those that contain arbitrary cycles.

3. Generating relational schemas. After a DTD graph is inlined, we generate a
relational schema based on it.

We describe these three steps in Sections 3.1, 3.2 and 3.2 respectively and
conclude the section by a discussion of the improvements we have made over the
shared-inlining algorithm. Finally, Section 3.4 illustrates these steps using a real
XML DTD and demonstrates how XML documents conforming to this DTD can
be stored based on the generated schema.

3.1 Simplifying DTDs

Most complexity of a DTD comes from the complexity of DTD expressions such
as <!ELEMENT a ((b+, c*, d?)?, (e?, f, (g*, h?)+)?)>. However, as far as
an XML query language is concerned, what matters is the siblings and parent-
child relationships between elements. We apply the transformation rules listed
in Figure 1 in the given order:

1. Apply rule 1 recursively and the resulting DTD will not contain +.
2. Apply rule 2 recursively and the resulting DTD will not contain + and ?.
3. Apply rule 3 recursively and the resulting DTD will not contain +, ? and |.
4. Apply rules 4(a) and 4(b) recursively and the resulting DTD will take the

form (e1, e2, · · · , en). Each ei = e or e∗ (i = 1, · · · , n) where e is an element
name. Therefore, a DTD is in some flattened form after this step.

5. Apply rules 5(a), 5(b), 5(c) and 5(d) recursively and the resulting DTD will
take the form (e1, e2, · · · , en) such that each ei contains distinct element
name.

1. e+ → e∗.
2. e? → e.
3. (e1 | · · · | en) → (e1, · · · , en).
4. (a) (e1, · · · , en)∗ → (e∗1, · · · , e∗n).

(b) e∗∗ → e∗.
5. (a) · · · , e, · · · , e, · · · → · · · , e∗, · · · , · · ·.

(b) · · · , e, · · · , e∗, · · · → · · · , e∗, · · · , · · ·.
(c) · · · , e∗, · · · , e, · · · → · · · , e∗, · · · , · · ·.
(d) · · · , e∗, · · · , e∗, · · · → · · · , e∗, · · · , · · ·.

Fig. 1. DTD simplification rules

From an XML query language’s point of view, two pieces of information
are essential: (1) The parent-child relationships between XML elements; and
(2) the relative order relationships between siblings. The above transformation
maintains the former but not the later. Fortunately, we can introduce an ordinal
attribute for each generated relation to encode the order of XML elements when
an XML element (and its containing subelements) is inserted into the database,
so that any XML query conforming to the input DTD can be evaluated over the
generated relational schema.

Example 1. Use the above simplification procedure, one can transform <!ELEMENT
a ((b+, c*, d?)?, (e?, f, (g*, h?)+)?)> to a simplified version
<!ELEMENT a (b*, c*, d, e, f, g*, h*)>.

The following theorem indicates that our simplification procedure is complete
and in addition, the resulting DTD expression is a tuple of element names or
their stars.

Theorem 1. Our DTD simplification procedure is complete in the sense that it
accepts every input DTD and each resulting DTD expression is in the form of
(e1, e2, · · · , en) where ei = e or e∗ (i = 1, · · · , n), e is an element name and each
ei contains a distinct XML element name.

Proof. We omit the proof since it is obvious.

Discussion. Compared to the transformation rules defined in the shared-inlining
algorithm [16], we made several improvements over it:

– Completeness. Our rules consider all possible combinations of operators and
XML elements whereas the shared-inlining algorithm only lists some im-
portant combinations. For example, there is no rule that corresponds to
(e1 | · · · | en)? in the shared-inlining algorithm.

– Efficiency. We enforce the application of the rules in the order given. Earlier
rules totally transform away some operators from the input DTD, and in each
step, the number of rules to be matched is greatly reduced. This improves
the efficiency of the simplification procedure significantly.

– Further simplification. We observe that the role of “?” corresponds to the
notion of nullable column in the relational table. We transform away “?”
and this greatly simplifies the resulting DTD graph (to be described in the
next subsection) since it does not contain “?” any more.

3.2 Creating and inlining DTD graphs

In this step, we create the corresponding DTD graph based on the simplified
DTD, and then inline as many descendant elements to an element as possible.
The rationale is that these inlined elements will eventually produce a relation.
Therefore, we only inline a child c to a parent p when p can contain at most
one occurrence of c in order to avoid introducing redundancy into the generated
relation. Theorem 1 indicates that after the simplification procedure, any input
DTD is now in a canonical form, i.e., each DTD expression is a tuple of distinct
element names or their stars. As a result, in the corresponding DTD graph, each
node represents an XML element, and each edge represents an operator of ’,’ or
’*’. Our inlining procedure considers the following three cases.

1. Case 1: Element a is connected to b by a ,-edge and b has no other incoming
edges. In other words, b is a non-shared node. In this case, a can contain at
most one occurrence of b, and we will combine node b into a while maintaining
the parent-child relationships between b and its children.

2. Case 2: Element a is connected to b by a ,-edge but b has other incoming
edges. In other words, b is a shared node. We do not combine b into a in this
case since b has multiple parents.

3. Case 3: Element a is connected to b by a *-edge. In this case, each a can
contain multiple occurrences of b element, and we do not combine b into a.

Only case 1 allows us to inline an element to its parent. We define the notion
of inlinable node as follows.

 b

c

e

a

 b c

a d
*

*

A

a, b c , d

*

*

d

f

g

a, b, c , d

e, f

g

 D

B

C

Fig. 2. Inlining DTD graphs

Definition 2. Given a DTD graph, a node is inlinable if and only if it has
exactly one incoming edge and that edge is a ,-edge.

Definition 3. Given a DTD graph and a node e in the graph, node e and all
other inlinable nodes that are reachable from e by ,-edge constitute a tree (since
we assume a DTD graph is consistent, thus there is no ,-edge cycle in the graph).
This tree is called the inlinable tree for node e (it is rooted at e).

Example 2. In Figure 2.A, nodes b and d are inlinable but nodes a and c are not
inlinable. The inlinable tree for a contains nodes a and b, whereas the inlinable
tree for c contains nodes c and d. In Figure 2.C, nodes b, c, d and f are inlinable,
but nodes a, e and g are not inlinable. The inlinable tree for a contains nodes a,
b, c and d, and the inlinable tree for node e contains nodes e and f .

The notion of inlinable tree formalizes the intuition of “inlining as many
descendant elements as possible to an element”. We illustrate our inlining algo-
rithm in pseudocode in Figure 3. Essentially, it uses a depth-first-search strategy
to identify the inlinable tree for each node and then inline that tree to its root.
A field inlinedSet of set type is introduced for each node e to represent the set of
XML element nodes that has been inlined to this node e (initially e.inlinedSet
= {e}). For example, in Figure 2.C, after the inlining procedure, a.inlinedSet =
{a, b, c, d}. The algorithm is efficient as indicated in the following theorem.

Theorem 2 (Complexity). Our inlining algorithm can be performed in O(n)
where n is the number of elements in the input DTD.

Proof. This is obvious since each node of the DTD graph is visited at most once.

Algorithm Inline(DTDGraph G)
Begin

For each node e in G do
If not visited(e) then

InlineNode(e)
End If

End For
End

Algorithm InlineNode(Node e)
Begin

Mark e as “visited”
For each child c of e do

If not visited(c) then
InlineNode(c)

End If
End For
For each child c of e do

If inlinable(c) then
e.inlinedSet ∪ = c.inlinedSet;
assign all children of c as the children of e
and then delete c from G

End If
End For

End

Fig. 3. The inlining procedure

Example 3. Using our inlining procedure given in Figure 3, the DTD graph
shown in Figure 2.A will be inlined into one shown in Figure 2.B, and the DTD
graph shown in Figure 2.C will be inlined into one shown in Figure 2.D.

We observe that after our inlining algorithm is applied, a DTD graph has
the following property: nodes are connected by ,-edge or *-edge and ,-edge must
point to a shared node. This observation is the basis of the final step of the
algorithm: generating relational schemas.

3.3 Generating relational schemas

After a simplified DTD graph is inlined, the last step is to generate a relational
schema based on this inlined DTD graph. The generated schema supports the
select, insert, delete and update [18] of an arbitrary XML element declared in
the input DTD. The following four steps will be performed on the inlined DTD
graph to generate a set of relations.

1. For each node e, a relation e is generated with the following relational at-
tributes.

(a) ID is the primary key, and for each XML attribute A of e, a correspond-
ing relational attribute A is generated with the same name.

(b) If | e.inlinedSet | ≥ 2, we introduce attribute nodetype to indicate the
type of the XML element stored in a tuple.

(c) The names of all the terminal XML elements in e.inlinedSet. Since a
non-terminal XML element is stored with values for ID and nodetype
and the storage of the XML subelements it contains, no additional at-
tribute is needed for it (this will become more clear later).

(d) If there is a ,-edge from e to node c, then introduce c.ID as a foreign
key of e referencing relation c.

2. If there are at least two relations t1(ID) and t2(ID) generated by step 1,
then we combine all the relations of the form t(ID) into one single relation
table1(ID, nodetype) where nodetype indicates which XML element is stored
in a tuple.

3. If there are at least two relations t1(ID, t1) and t2(ID, t2) generated by step
1, then we combine all the relations of the form t(ID, t) into one single
relation table2(ID, nodetype, pcdata) where nodetype indicates which XML
element is stored in a tuple.

4. If there is at least one ∗ edge in the inlined DTD graph, then we intro-
duce relation edge(parentID, childID, parentType, childType) to store all
the parent-child relationships corresponding to *-edges. The domains of par-
entType and childType are the set of XML element names defined in the
input DTD.

Essentially, step 1 converts each node e in the inlined DTD graph into a
separate relation e. If there are some other XML element nodes that have been
inlined to it (i.e., | e.inlinedSet | ≥ 2), relation e will be used to store all these
XML elements, and attribute nodetype will be introduced to indicate which XML
element is the root for each tuple. Since step 1 might produce a set of relations
in the forms of t(ID) and t(ID, t), Step 2 and 3 optimize them by performing a
horizontal combining of them into table1(ID, nodetype) and table2(ID, nodetype,
pcdata). These optimizations reduce the number of target relations and will fa-
cilitate the mapping from XML operations to relational SQL operations. Finally,
one single relation edge(parentID, childID, parentType, childType) stores all the
many-to-many relationships between arbitrary two XML elements.

Although our inlining algorithm is inspired by the shared-inlining algorithm,
we made several significant improvements over it:

– Completeness. Our algorithm is complete in the sense that it can deal with
any input DTDs including arbitrary cyclic DTDs. The shared-inlining algo-
rithm defines a rule to deal with two mutually recursive elements and it is
not clear how a DTD with a cycle involving more than two elements is han-
dled (see Figure 4.A for such an example). In addition, the shared-inlining
algorithm checks the existence of recursion explicitly, we do not need to do
this checking and cycles are dealt with naturally.

conference journal

author,name,institute

papers

* *
paper

*

authors

*

*

* *

dept

A B

*

book

*

*
part

chapter

*

section

C D

report, references

faculty

name

staff student

*

*

* *

telephone

literature

Fig. 4. Four inlined DTD graphs

– Redundancy elimination for shared nodes. A node is shared if its in-degree
is more than one. Our algorithm deals with shared nodes differently from
the shared-inlining algorithm. For example, for the shared node author in
Figure 4.B, the shared-inlining algorithm will generate a separate relation au-
thor(authorID, author.parentID, author.parentCODE, author.name.isroot, au-
thor.name, author.institute.isroot, author.institute). This schema implies a
great deal of redundancy if an author writes hundreds of conference or journal
papers, In contrast, we create a relation author(ID, nodetype, name, insti-
tute) for author, and translate its parent ∗-edges (and all other ∗-edges) into
another separate relation edge(parentID, childID, parentType, childType).
Our strategy eliminates the above redundancy and bears the same spirit
as the rule of mapping many-to-many relationships into separate relations
in translating Entity-Relationship (ER) diagrams into relational schemas.

– Optimizations. Two situations are very common in XML documents: (1)
there are XML elements which do not have any attributes and their single
purpose is to provide a tag name (e.g., Figure 4.C) for supporting nested
structure; and (2) there are terminal nodes that are shared by several XML
elements (such as name and telephone in Figure 4.D). If we created a sepa-
rate relation for each such kind of element, then we would produce a set of
relations of the form of t(ID) (case 1) or t(ID, t) (case 2). Hence, instead,
we create two relations table1(ID, nodetype) and table2(ID, nodetype, pcdata)
which conceptually combine all these relations. These optimizations greatly

reduce the number of relations in the generated schema and facilitates the
translation of XML queries into relational queries.

– Efficiency: The shared-inlining algorithm introduces an attribute parentID
for each node under the ∗ operator while the ∗ operator itself is never trans-
lated into a separate relation. This facilitates the traversal of XML docu-
ments upwards (from children to parents) but not downwards (from parents
to children). For example, in Figure 4.D, the shared-inlining algorithm will
generate relations dept, faculty, staff, etc. Given a faculty, it is very easy
to locate which department he is from based on an index on facultyID and
faculty.parentID of relation faculty. However, it would be difficult to navi-
gate downwards for path expressions such as dept//name (get all the names
reachable from element dept), since one needs to consider the fact that dept
actually has three kinds of children (faculty, staff, and student), and all these
three ways of reaching a name have to be combined. In contrast, We will
translate all ∗-edges into one single relation edge(parentID, childID, parent-
Type, childType), and create two indices on parentID and childID respec-
tively. In this way, both upward navigation and downward navigation are
supported efficiently.

<!DOCTYPE publication [
<!ELEMENT publication (journal*, conference*)>
<!ELEMENT journal (name, editors, paper+)>
<!ELEMENT conference (name, paper+)>
<!ELEMENT paper (ptitle, authors,

(volume, number)?)>
<!ATTLIST paper year CDATA>
<!ELEMENT editors (person+)>
<!ELEMENT authors (person+)>
<!ELEMENT person (pname, institute, techreport*)>
<!ELEMENT techreport (title, references)>
<!ELEMENT references (paper+)>
<!ELEMENT institute (#PCDATA)>
<!ELEMENT pname (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT ptitle (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>

]>

Fig. 5. A publication DTD

3.4 A complete example

In this section, we illustrate different steps of our algorithm with a real DTD
example, and demonstrate how XML documents conforming to this DTD can
be stored based on the generated schema.

An XML DTD for publications is shown in Figure 5. After the simplification
step (using the rules defined in Figure 1), the input DTD is simplified into one
with the following new XML element definitions. The definitions for other XML
elements remain the same.

– <!ELEMENT journal (name, editors, paper*)>.
– <!ELEMENT conference (name, paper*)>.
– <!ELEMENT paper (ptitle,authors,volume,number)>.
– <!ELEMENT editors (person*)>.
– <!ELEMENT authors (person*)>.
– <!ELEMENT references (paper*)>.

Due to space limit, we omit the DTD graph for the simplified DTD and the inlined
DTD graph and leave them as an exercise for the reader. Finally, the following eight
relations will be generated.

– publication(ID) stores XML element publication.
– conference(ID, name.ID) stores XML element conference.
– journal(ID, nodetype, name.ID) stores XML elements journal and editors.
– name(ID, PCDATA) stores XML element name.
– paper(ID, nodetype, ptitle, volume, number, year) stores XML elements ptitle,

authors, volume, number and year.
– person(ID, nodetype, pname, institute) stores XML elements person, pname and

institute.
– techreport(ID, nodetype, title) stores XML elements techreport, title and references.
– edge(parentID, childID, parentType, childType) stores all the parent-child rela-

tionships between two XML elements.

4 Conclusions and future work

We have developed a new inlining algorithm that maps a given input DTD to a re-
lational schema. Our algorithm is inspired by the shared-inlining algorithm but fea-
tures several improvement over it including overcoming its incompleteness, eliminating
redundancies caused by shared elements, performing optimizations and enhancing ef-
ficiency. Future work includes a full evaluation of the performance of our approach
versus other approaches and adapting our algorithm to one that maps XML Schemas
[17] (an extension to DTDs) to relational schemas. Based on this schema mapping
scheme, the mappings from XML data to relational data, and from XML queries to
relational queries need to be investigated.

References

1. eXtensible Information Server (XIS). eXcelon Corporation.
http://www.exln.com.

2. Tamino XML Server. Software AG. http://www.softwareag.com/tamino.
3. T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. Extensible Markup Lan-

guage (XML) 1.0, October 2000. http://www.w3.org/TR/REC-xml.
4. M. J. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and

S. Subramanian. XPERANTO: Publishing object-relational data as XML. In
WebDB (Informal Proceedings), pages 105–110, 2000.

5. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: a graphical language for querying and restructuring WWW data. In Interna-
tional World Wide Web Conference (WWW), Toronto, Canada, May 1999.

6. D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanascu. XQuery: A
Query Language for XML, February 2001. http://www.w3.org/TR/xquery.

7. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query
Language for XML, August 1998. http://www.w3.org/TR/NOTE-xml-ql/.

8. A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In Proc. of ACM SIGMOD International Conference on Management
of Data, pages 431–442, Philadephia, Pennsylvania, June 1999.

9. M. Fernndez, W. Tan, and D. Suciu. SilkRoute: Trading between relations and
XML. In Proc. of the Ninth International World Wide Web Conference, 2000.

10. D. Florescu and D. Kossman. Storing and querying XML data using an RDBMS.
IEEE Data Engineering Bulletin, 22(3), 1999.

11. D. Florescu and D. Kossmann. A performance evaluation of alternative mapping
schemes for storing xml data in a relational database. In Proc. of the VLDB, 1999.

12. R. Goldman, J. McHugh, and J. Widom. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Languages, 1999.

13. A. Kurt and M. Atay. An experimental study on query processing efficiency
of native-XML and XML-enabled relational database systems. In Proc. of the
2nd International Workshop on Databases in Networked Information Systems
(DNIS’2003), Lecture Notes in Computer Science, Volume 2544, pages 268–284,
Aizu-Wakamatsu, Japan, December 2002.

14. J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL), 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

15. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh,
and B. Reinwald. Efficiently publishing relational data as XML documents. VLDB
Journal, 10(2–3):133–154, 2001.

16. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. DeWitt, and J. Naughton.
Relational databases for querying XML documents: Limitations and opportunities.
The VLDB Journal, pages 302–314, 1999.

17. C. Sperberg-MCQueen and H. Thompson. W3C XML Schema, April 2000.
http://www.w3.org/XML/Schema.

18. I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In Proc. of ACM
SIGMOD International Conference on Management of Data, Santa Barbara, CA,
2001.

19. F. Tian, D. DeWitt, J. Chen, and C. Zhang. The design and performance evaluation
of alternative XML storage strategies. ACM Sigmod Record, 31(1), March 2002.

