A Mapping Schema and Interface for XML Stores

Sihem Amer-Yahia
AT&T Labs — Research
180 Park Ave
New Jersey, USA

sihem@research.att.com

ABSTRACT

Most XML storage efforts have focused on mapping docu-
ments to relational databases. Mapping choices range from
storing documents verbatim to shredding documents into
relations in various ways. These choices are usually hard-
coded into each storage system which makes sharing loading
and querying utilities and exchanging information between
different XML storage systems hard. To address these is-
sues, we designed MXM and IMXM, a mapping schema
and an interface API to define and query XML-to-relational
mappings.

A mapping is expressed as an instance of MXM. MXM
is declarative, concise and captures most existing XML-to-
relational mappings. Mappings can be expressed for docu-
ments for which no schema information is provided or doc-
uments that conform to either a DTD or an XML Schema.
IMXM is an interface that allows querying of information
contained in a MXM mapping. IMXM is designed as a li-
brary of functions which makes it easy to use inside any
utility or application that needs to gain access to the XML-
to-relational mapping. MXM is extensible and can incorpo-
rate new XML-to-relational mappings. We implemented a
prototype to define mappings as instances of MXM and gen-
erate a repository of meta information on the XML and the
relational data and the mapping choices. We implemented
IMXM on top of this repository and used it for generating
a relational schema and loading XML documents.

Categories and Subject Descriptors

H.2.5 [Heterogeneous Databases]: Data Translation; H.2.3

[Languages]: Data description languages (DDL)

General Terms

Design Languages

Keywords

XML-to-Relational Mapping, XML Storage/Loading/Publishing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WIDM’02, November 4-9, 2002, McLean, Virginia, USA.

Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

Divesh Srivastava
AT&T Labs — Research
180 Park Ave
New Jersey, USA

divesh@research.att.com

1. INTRODUCTION

Multiple techniques for mapping XML documents into
a relational database have been proposed, both in indus-
try [3, 7, 14] and in research [5, 8, 10, 15, 16, 17, 18, 19].
Each technique comes with its own design choices. Mapping
choices range from storing XML documents or XML frag-
ments as CLOBs to shredding the XML documents accord-
ing to a predefined relational schema. In all cases, mapping
choices are hard-coded into the storage system in internal
data structures. Ideally, all existing XML-to-relational map-
pings should be made accessible through a common interface
enabling to share utilities such as loading and querying the
stored XML and to develop applications such as data ex-
change that need access to mapping choices. In this paper,
we develop MXM and IMXM, a mapping schema and an
interface API to express and query XML-to-relational map-
pings.

The variety of XML data found today [21] as well as the
flexibility of representation offered by XML raises challeng-
ing issues for storing XML data in traditional relational sys-
tems [2]. Some XML applications built on top of the stored
data might need only limited information on the structure of
input documents, others rely on detailed information on the
content and the structure of input documents to guaran-
tee efficiency. For example, e-commerce applications that
publish catalogs or portions of catalogs might need only
coarse information about how XML documents are stored.
On the other hand, applications that need to correlate data
in an XML document such as medical records data [11] rely
on a finer knowledge of the document structure and data
types. Consequently, existing XML-to-relational mappings
have explored several ways of mapping document content
and structure.

Existing mapping proposals vary in their inlining/outlining
choice (attributes are usually inlined, sub-elements might
be) and in the way document structure is captured (us-
ing key/foreign key values, using special-purpose fields, ...).
Utilities such as the translation of XQuery queries into SQL,
XML document loading programs, XML publishing pro-
grams cannot be shared among multiple storage systems be-
cause each of them depends on the specified storage choices.
In addition, applications such as data exchange, built on top
of multiple XML stores, need to gain access to the XML-to-
relational mapping information. These utilities and applica-
tions would greatly benefit from having a common interface
to the mapping choices in each storage system.

Our contributions are as follows:

o We designed MXM, a schema to express mappings

from XML to relations. MXM is concise declarative
and extensible. MXM can be used for mapping docu-
ments for which no schema information is provided, or
documents that conform to a DTD or documents that
conform to an XML Schema. A mapping is defined as
an instance of MXM.

o We developed IMXM, an interface to query mappings.
IMXM was designed to query all choices made in a
mapping. IMXM is a library of functions that can
be easily used by any utility or application that needs
access to the stored XML data.

e We implemented a prototype in which a mapping (de-
fined as an instance of MXM) is parsed and stored in
a mapping repository on top of which we implemented
IMXM. We used IMXM to create the target relational
schema. We also used IMXM to develop a loader that
reads XML documents and stores them in a relational
database using information from the repository.

Section 2 discusses different XML-to-relational mapping ex-
amples and gives our design desiderata. MXM and IMXM
are described in Section 3 and Section 4. Section 5 contains
implementation details. Section 6 discusses related work.
Conclusions and ongoing work are given in Section 7.

2. MOTIVATION

Existing XML-to-relational mapping techniques can be
classified into three categories [2]:

Generic Techniques such as the Edge, Attribute and
Universal that were first introduced in [10] to store
XML documents in tables and then used in [19]. These
techniques do not use DTD or XML Schema informa-
tion and view each input document as a tree which is
mapped into a generic relational schema that captures
elements, attributes and document structure.

Schema-driven Techniques that derive a relational schema

from a DTD or XML Schema. This is done using ei-
ther a fixed or a flexible set of rules. Fixed mappings
(Basic, Shared and Hybrid) are defined from DTDs to
tables [17]. Flexible mappings [5] use an XML Schema.
In both cases, some broad principles are applied. Rep-
etition of sub-elements is modeled in separate tables.
Non-repeated sub-elements may be “inlined” in their
parent table. Optionality is handled using nullable
fields. Choice is represented using multiple tables or a
universal table with nullable fields. Document struc-
ture is captured through specific field values.

User-defined Techniques refer to the ones proposed by
commercial systems [3, 7, 14] and rely on the user
to give the target relational schema. The mapping is
provided either programmatically through special pur-
pose queries or using a declarative interface (annotated
schemas). Microsoft SQL Server also implements the
generic Edge approach.

In [16], the authors provide a description and a compar-
ison of multiple techniques to capture order in XML docu-
ments including the techniques described in [1, 12, 23].

2.1 Mapping Examples

We consider the simple DTD given below where each ad-
dress book has an owner who has a set of emails (both rep-
resented as attributes). An address book could be organized
as a (possibly empty) sequence of pairs of fullname (or last-
name) and telephone information (telephone numbers).

<!DOCTYPE addressBook [

<!ELEMENT addressBook addressBookContent>

<!ATTLIST addressBook owner CDATA email CDATA>
<!ENTITY addressBookContent (fnamelnameTelephone)*>
<!ENTITY fnamelnameTelephone (fnamelname,telephone)>
<!ENTITY fnamelname (fullname|lastname)>

<!ELEMENT fullname (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT telephone (#PCDATA)>]1>

In order to store XML documents that conform to this
DTD, elements, attributes and document structure need to
be captured. In addition, more information might need to
be captured if an XML Schema [20] is given. For example,
in the XML Schema below, type information can be associ-
ated to attributes (instead of them being all strings). The
attribute email is a list of strings (that could be the dif-
ferent possible emails of an address book’s owner) and the
attribute telephone is an integer (representing a telephone
number in this case).

<schema>
<element name="addressBook">
<attribute name="owner" type="string"/>
<attribute name="email" type="strList"/>
<group ref="addressBookContent"/>
</element>
<group name="addressBookContent'>
<choice>
<group ref="fnamelnameTelephone"
minOccurs=0 max0Occurs="unbounded"/>
</choice>
</group>
<group name="fnamelnameTelephone">
<sequence>
<group ref="fnamelname"/>
<element name="telephone" type="integer"/>
</sequence>
</group>
<group name="fnamelname">
<choice>
<element name="fullname" type="string"/>
<element name="lastname" type="string"/>
</choice>
</group>
<simpleType name="strList">
<list itemType="string"/>
</simpleType>
</schema>

This XML Schema reflects as much as possible the DTD.
The reader must note that we have decomposed the DTD
into entities and the XML Schema into groups. Entities
should be seen as macros. Groups are generic names that
designate a sequence group (ordered set), an all group (un-
ordered set) or a choice [20]. For example, the entity
fnamelnameTelephone is modeled as a sequence group with
the same name in the XML Schema. This decomposition is
intentional as it is one of the key points of our approach and
offers additional flexibility in expressing XML-to-relational
mappings. In particular, the mapping approach described
in [5] is based on the principle of mapping groups in XML
Schema into tables in the relational schema. This mecha-
nism abstracts the mapping from the XML Schema name
typing mechanism and guarantees the uniqueness of names
in the XML Schema. The reader must understand that the

purpose of this rewriting is to try to address the same map-
ping issues from DTDs and from XML Schemas. A more
formal definition should be given in a longer version of this
paper.

We describe several relational schemas for mapping the
above DTD and XML Schema. The first relational schema,
RS1, given below, is similar to the schema-driven mappings
of [5] and [17] (to the extent that in RS1, table names are
specified by the user). Every element definition in the DTD
is stored in a separate table. Every attribute is inlined in the
element that contains it. The tag of each element is captured
in tag. The name of each attribute is captured in the name
of the field that contains its value. Document structure is
captured by three fields: KEY (which is a unique identifier
assigned to each element), PARENT (which is a foreign key to
the KEY field contained in the parent element) and ORDINAL
(for sibling order).

RS1

RaddressBook [addressBook_KEY,tag,owner_VALUE,email_VALUE]

fullnameTable [fullname_KEY,tag,fullname_VALUE,
fullname_ORDINAL,fullname_PARENT]

lastnameTable [lastname_KEY,tag,lastname_VALUE,
lastname_0RDINAL,lastname_PARENT]

telephones[telephone_KEY,tag,telephone_VALUE,

telephone_ORDINAL, telephone_PARENT]

Another common way of capturing XML structure is to in-
line sub-elements inside their parent element. Inlining tech-
niques are explored both in [5] and in [17]. In RS2, the sub-
elements fullname, lastname and telephone are inlined in
their parent element addressBook. The inlining is possible
only if each addressBook contains only one occurrence of
the pair (fullname,telephone) or (lastname,telephone),
otherwise, additional processing is required (e.g, concatenat-
ing values into strings). In order to capture the structure of
elements and attributes that are not inlined (that are out-
lined), RS2 uses an external table, Parent_Child that con-
tains a foreign key to the parent element, a foreign key to
the child element and an ordinal number to capture sibling
order. To allow maximal sharing, outlining of attributes
should also be permitted. This is the case of the attribute
email for which a separate table has been created. The re-
lationship between addressBook and email is captured in
the Parent_Child table. Since attributes in XML are not
ordered, the value of the field Child_ORDINAL for emails is
not relevant. Note also that in RS2, none of the tables has
a tag field because the name of the table reflects the tag of
the element or the attribute it is storing.

RS2

Parent_Child[Key_PARENT,Key_CHILD,Child_ORDINAL]

addressBook[addressBook_KEY, owner_VALUE,fullname_VALUE,
lastname_VALUE,telephone_VALUE]

email[email _KEY,email_VALUE]

In RS3, the structure of documents is captured using a
preorder/postorder as described in [16]. Each tuple has
unique preorder and postorder identifiers that correspond to
traversing the XML document in this order. The preorder
field in each table is also used as a key field. Each tuple has
also a level number and a document identifier. Since this
representation is powerful enough to capture the structure
of an XML document, the PARENT and ORDINAL fields are not
needed anymore. Note that users could specify table names
(e.g., Rlastname).

RS3
addressBook [addressBook_PRE, addressBook_P0S,addressBook_LEV,

addressBook_DOC, owner_VALUE,email _VALUE]
fullname[fullname_PRE,fullname_VALUE,fullname_ORDINAL,
fullname_PARENT]
Rlastname[lastname_KEY,tag,lastname_VALUE,lastname_ORDINAL,
lastname_PARENT]
telephone [telephone _KEY,telephone_VALUE,telephone_ORDINAL,
telephone_PARENT]

In addition to variance in capturing structure, XML-to-
relational mappings may differ in the way they capture groups.
As an example, in RS4, given below, the sequence group
formed by the choice between elements fullname and lastname
and the element telephone is captured by storing these ele-
ments together in the same table. This mapping is explored
in [5]. Structure is captured using a Parent_Child table.

RS4

Parent_Child[Key_PARENT,Key_CHILD,Child_ORDINAL]

addressBook [addressBook_KEY,owner_VALUE,email_VALUE]

fnamelnameTelephone [fnamelnameTelephone_KEY,fullname_VALUE,
lastname_VALUE, telephone_VALUE]

Another aspect of variance in capturing element content
comes from capturing choices. For example, the choice be-
tween fullname and lastname is inlined in the same table
both in RS4 and in RS5. This choice can also be captured
by outlining those elements into separate tables and captur-
ing their relationships to their parent sequence (see variant
below).

RS5

Parent_Child[Key_PARENT,Key_CHILD,Child_ORDINAL]

addressBook [addressBook_KEY,owner_VALUE,email_VALUE]
fnamelnameTelephone [fnamelnameTelephone_KEY,telephone_VALUE]
fnamelname [fnamelname_KEY,fullname_VALUE,lastname_VALUE]

In order to outline the elements fullname and lastname,
we can write:

fnamelnameTelephone [fnamelnameTelephone_KEY,telephone_VALUE]
fullname[fullname_KEY,fullname_VALUE]
lastname[lastname_KEY,lastname_VALUE]

The mechanism that enables mapping groups is very pow-
erful and allows to derive any level of inlining/outlining.
these mappings are captured in [5]. However, document
structure is always captured as in schema RS1.

Finally, RS6 shows the case where documents are mapped
to a CLOB. CLOBs could be used to store any XML frag-
ment [3, 14]. CLOBs could also be created to store at-
tributes.

RS6
CaddressBook [addressBook_KEY,text_VALUE]

2.2 Mapping Desiderata

Except for the use of an external relation to map struc-
ture (which is an additional feature of our mappings), all
other examples are captured in existing XML-to-relational
mappings. Our goal is to provide a declarative mechanism
to specify the mappings that have been proposed in both
research and industry and offer an interface to access infor-
mation about mappings. The interface should allow to query
the mapping choices as well as details about the XML and
relational schemas. We are not aiming at capturing all pos-
sible XML-to-relational mappings. We want to design our
mapping language to be extensible so that new XML-to-
relational mappings could be incorporated into the language
and the interface. We believe that by capturing existing re-
search and industry proposals, our language remains simple

MS DTD or XML Schema

l

mapping
processing

mapping

repository

‘ API ‘
relational schema XQUERY to SQL XML
creation translation applications
RS] loadi [—
(relational schema) oading RDB
programs
XML S

documents

Figure 1: Overall Architecture

enough to use while enabling sharing of utility programs and
develop applications.

Capturing generic techniques described in [10] is straight-
forward. These techniques are uniquely addressed by their
name and correspond to generating a relational schema that
is the same for any document.

Capturing fixed schema-driven techniques described in [17]
is also straightforward. The flexible schema-driven tech-
nique of [5] is based on rewriting the input XML Schema
into equivalent XML Schemas and selecting the most ef-
ficient one based on a query mix and a set of statistics.
The XML Schema rewriting step is prior to any XML-to-
relational mapping. Therefore, in order to capture the map-
pings described in [5], we only need to be able to express
their XML-to-relational mapping rules. In these rules, doc-
ument structure is captured using parent pointers as in RS1
and element names are described using a tag field. All we
need to guarantee is that our mapping schema enables these
rules. The last mappings are the user-defined mappings
where document structure is captured in the same way as
in [5]. Finally, we capture structure mappings described
in [16].

3. DESIGN OF MXM
3.1 Design Choices

In order to make the design of our mapping language ex-

tensible, we express its grammar in the W3C XML Schema [20].

The design of MXM is summarized in Figure 1.

Symmetry of elements and attributes: We map attributes

and elements similarly. Attributes can be outlined for
maximal sharing. When they are, their relationship to
their containing elements is captured in the same man-
ner as document structure except that attributes are
not ordered. Outlining attributes has one appealing
benefit. The relational model imposes some limita-
tions when mapping attributes whose type is complex
to a field in a table. Thus, we could convert attributes

with a complex type into strings by concatenating val-
ues or we could allow outlining of attributes and thus
capture complex types more naturally. Both choices
are expressible in our mappings.

Mapping groups: The ability of mapping groups offers
additional flexibility in the mapping (see the relational
schema RS4 given in Section 2.1). This design choice
also enables the use of DTDs and XML Schemas to
describe input documents. In DTDs, entities are as-
similated to groups and non-terminal nodes are used
to specify the XML-to-relational mapping. When an
XML Schema is given, element, attribute and group
names are used in the mapping. In XML Schema, two
elements with two different (tag) names, might have
the same type (in our case, they would refer to the
same group name). If a group is mapped to a table,
we allow the possibility of specifying that a tag field
needs to be created in the table. Sometimes, groups
and tags are used interchangeably, in which case, the
user could specify that the table to which the type is
mapped has the same name as the group, in which
case, no tag field is created in the table. The user
could also specify that a tag field should be created in
the table and assign to the table a different name. Our
mapping schema allows all these cases.

Mapping document structure: In order to capture mul-
tiple possibilities of mapping document structure, each
possibility is given a distinct name which is used in
the mapping. For example, PCO is used to specify that
document structure will be captured by the parent,
child and ordinal fields in each table. PREPOS is used
to specify that preorder, postorder, level and docu-
ment identifiers should be used. DEWEY is used to mean
the Dewey Decimal Classification developed for gen-
eral knowledge classification [12]. Document structure
encoding is specified once for a mapping and used uni-
formly across all XML documents. Finally, some en-
coding such as the Edge approach described in [10] and
the Hybrid approach described in [17], are very specific
choices that are also addressed by their name in the

mapping.

Naming tables and fields: In our design, we allow flexi-
ble naming of tables. If the user specifies a table name,
it will be used, otherwise, a default name will be gen-
erated. However, field names are system-generated be-
cause they are used to either capture structure (e.g.,
_PARENT and _ORDINAL fields) or to capture inlined val-
ues (i.e., the _VALUE field). An extension to our design
might allow the user to specify field names.

3.2 Grammar for MXM

We define a XtoRMapping as being composed of a mapping
of document structure, StructMap, a mapping of elements,
attributes and groups into tables, TableMap, and a mapping
of elements and attributes into CLOBs, CLOBMap.

<xsd:schema>
<element name="XtoRMapping">
<attribute name="from" type="string" use="required"/>
<attribute name="to" type="string" use="required"/>
<element name="StructMap"/>
<attribute name="whichMap" type="string"
use="required"/>
<element name="TableMap">
<element name="table"
minOccurs="1" maxOccurs="unbounded">
<attribute name="whichTable" type="string"
use="optional"/>
<attribute name="tagField" type="string"
use="optional"/>
<element name="sourceName" type="string"
minOccurs="1" maxOccurs="unbounded"/>
</element>
</element>
<element name="CLOBMap">
<element name="CLOB" type="sourceNames"
minOccurs="1" maxOccurs="unbounded">
<attribute name="whichCLOB" type="string"
use="optional"/>
<element name="sourceName" type="string"
use="required"/>
</element>
</element>
</element>
</xsd:schema>

StructMap indicates which one of the following techniques
is used to capture document structure between elements
and outlined sub-elements and attributes. The attribute
whichMap can have one of the following values empty, "PREPOS",

"DEWEY", "PCO", "EXTREL", "EDGE", "ATTRIBUTE", "UNIVERSAL", "BASIC",

"SHARED", "HYBRID". These values could be extended to in-
corporate new structure mappings. The effect of each of
"PREPOS", "DEWEY", "PCO" is to generate appropriate fields in
each table. The effect of "EXTREL" is to generate a Parent_Child
table and a key field in each table (see example schema
RS2 in Section 2.1). Finally, the effect of "EDGE", "ATTRIBUTE",
"UNIVERSAL", "BASIC", "SHARED" and "HYBRID" is to create the ta-
bles that correspond to each method. In these cases, no
other table will be created. If the value of whichMap is empty,
structure will not be captured.

TableMap is used to create tables from elements, attributes
or groups (choice, sequence and allgroup). A table might be
assigned a name (otherwise it is automatically generated by
concatenating all source names together). It is also possi-
ble to specify whether a tag field should be created or not
(see discussion in Section 2.2). In the case input documents
are described with a DTD, any non-terminal node name in
the DTD can be used as a source name. In the case input
documents are described with an XML Schema, element,
attribute and group names could be used as source names
to create tables. In both cases, when multiple source names
are used, data that corresponds to these names is stored in
the same table.

Finally, CLOBMap indicates the creation of a CLOB from a
source name. The name of a CLOB is either given or gener-
ated automatically. A CLOB containing all the substructure
rooted at the specified name is created.

A consequence of our mapping schema design is the possi-
bility for the user to specify which mapping should be used
for document structure. In addition to simulating existing
mapping proposals, this flexibility offers additional advan-
tages for future applications. Our design could also be ex-
panded to permit dual mappings as in the design of storing
LDAP data in a relational backend [13]. In this design,
LDAP entities are stored in two forms: a textual form that

resembles CLOBs and a relational form.

3.3 Default Mapping Rules

We chose to make the specification of MXM short and
concise and enforce the following default mapping rules: (1)
If not given, table and CLOB names are system-generated.
(2) Field names that capture document structure (hierarchy
and tag information) are always system-generated. (3) Field
names that capture inlined element and attribute values are
always system-generated. (4) When repeated elements or
complex type attributes are inlined, their values are concate-
nated into a single field value. (5) If a table is not created for
a source name (element, attribute and group), it is inlined
by default. (6) When elements or attributes are inlined, the
name of the field that contains their value is their tag name
concatenated to _-VALUE. (7) The Parent_Child table is gen-
erated automatically when EXTREL is specified as a way to
capture document structure.

In order to avoid hard-coding the semantics of default
mapping rules into each application, these rules could be
specified in a “configuration file” that would be parsed and
stored along with other mapping information. The main
benefit of writing default rules as a separate specification
is that they could be made queryable and thus applications
built on top of the mapping information could be abstracted
from any hard-coded choice.

3.4 Examples of MXM Mappings

We give the MXM specification of each mapping example
in Section 2.1. The first one specifies that structure is cap-
tured by parent and ordinal values. It also specifies table
names.

<XtoRMapping from="XS" to="RS1">
<StructMap whichMap="PC0"/>
<TableMap>
<table whichTable="RaddressBook">
<sourceName> addressBook </sourceName>
</table>
<table whichTable="fullnameTable">
<sourceName> fullname </sourceName>
</table>
<table whichTable="lastnameTable">
<sourceName> lastname </sourceName>
</table>
<table whichTable="telephones">
<sourceName> telephone </sourceName>
</table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

The mapping of RS2 illustrates the use of an external rela-
tion Parent_Child to capture document structure. In addi-
tion, since none of fullname, lastname or telephone and
none of the groups that contain them creates a table, they
are all inlined. Finally, email is outlined in its own ta-
ble. The relationship between the elements addressBook
and email is captured in the Parent_Child table, therefore,
enabling to store the list of emails of the same owner in mul-
tiple tuples in the email table. Table names are generated
automatically since they are not specified.

<XtoRMapping from="XS" to="RS2">
<StructMap whichMap="EXTREL"/>
<TableMap>
<table tagfield="NONE">
<sourceName> addressBook </sourceName>
</table>
<table tagfield="NONE">

<sourceName> email </sourceName>
</table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

RS3 shows the use of the preorder/postorder approach to
capture document structure.

<XtoRMapping from="XS" to="RS3">
<StructMap whichMap="PREP0S"/>
<TableMap>
<table tagfield="NONE">
<sourceName> addressBook </sourceName>
</table>
<table tagfield="NONE">
<sourceName> fullname </sourceName>
</table>
<table whichTable="Rlastname">
<sourceName> lastname </sourceName>
</table>
<table tagfield="NONE">
<sourceName> telephone </sourceName>
</table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

RS4 shows the possibility to map a sequence group into a
table. Since none of the groups, elements or attributes used
in the sequence group is used to create a separate table,
they are all inlined inside the fnamelnameTelephone table.
Structure is stored in the Parent_Child table.

<XtoRMapping from="XS" to="RS4">
<StructMap whichMap="EXTREL"/>
<TableMap>
<table tagfield="NONE">
<sourceName> addressBook </sourceName>
</table>
<table tagfield="NONE">
<sourceName> fnamelnameTelephone
</sourceName> </table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

RS5 shows a variant of RS4 where the choice group fnamelname

is outlined.

<XtoRMapping from="XS" to="RS5">
<StructMap whichMap="EXTREL"/>
<TableMap>
<table tagfield="NONE">
<sourceName> addressBook </sourceName>
</table>
<table tagfield="NONE">
<sourceName> fnamelnameTelephone </sourceName>
</table>
<table tagfield="NONE">
<sourceName> fnamelname </sourceName>
</table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

The next variant of RS5 shows the possibility of outlin-
ing fullname and lastname from the choice group, thereby
creating a separate table for each of them.

<XtoRMapping from="XS" to="RS5">
<StructMap whichMap="EXTREL"/>
<TableMap>
<table tagfield="NONE">
<sourceName> addressBook </sourceName>
</table>
<table tagfield="NONE">
<sourceName> fnamelnameTelephone </sourceName>

</table>
<table tagfield="NONE">
<sourceName> fullname </sourceName>
</table>
<table tagfield="NONE">
<sourceName> lastname </sourceName>
</table>
</TableMap>
<CLOBMap/>
</XtoRMapping>

Finally, RS6 shows the creation of one CLOB to contain
the whole document. No table mapping is given in this case.
The attribute whichMap is not specified, thus structure is not
captured.

<XtoRMapping from="XS" to="RS6">
<StructMap>
</TableMap>
<CLOBMap>
<CLOB whichCLOB="CaddressBook">
<sourceName> addressBook </sourceName>
</CLOB>
</CLOBMap>
</XtoRMapping>

4. DESIGN OF IMXM

Since MXM has an XML syntax, it could be queried us-
ing a language such as XQuery. XQuery is powerful and
could be used to extract any information from the mapping.
However, it assumes knowledge of the language itself. We
designed a simple interface API composed of a set of func-
tions that query element and attribute mappings and infor-
mation on the generated relational schema. The first version
of the API contains the following functions: getStructMap(),
isInlined(ElemName|AttName), getTableName (ElemName | AttName),
getCLOBName (ElemName | AttName), getFields(TableName),
getFieldType(FieldName).

In addition, if default mapping rules are made queryable
through the API, programs and applications built on top
of the mapping information could use this API and avoid
to hard-code default choices. Examples of functions that
query defaults are getDefTableNaming() that returns the
default for naming tables, getDefValNaming() that returns
the default naming of fields that contain values and finally,
IsDefInline() which indicates whether the default is to
inline or outline elements and attributes.

The interface could also be designed at multiple granular-
ities. For example, instead of combining several functions
in the API, a function that returns a set of information
about the mapping of a particular element (mapping of its
attributes, mapping of its sub-elements, ...) could be useful.
The granularity of the API depends on the applications that
will make use of it.

S. IMPLEMENTATION OF MXM

We implemented MXM and IMXM on top of a relational
system. The mapping schema MS is parsed and stored in
a repository. We define a relational schema that captures
the information stored in the repository. When a map-
ping schema is parsed, it is stored in a relational database.
We implemented IMXM as a library of functions in C with
ODBC calls to the database. IMXM could also be imple-
mented in Java using JDBC calls. Using IMXM, we imple-
mented a relational schema generator and a set of loading
programs that parse XML documents and populate tables.

The mapping repository conforms to the relational schema
given below. In order to apply the default mapping rules
described in Section 3.3, we need to record information on
the input DTD or XML Schema (if any). This is what the
first set of tables describes.

ElemGroup associates element names (tags) with groups
they map to (that could be the same as the element itself).
AttGroup associates attributes to groups. GroupInfo is the
information about existing groups where whichGroup might
have one of these values empty, choice, sequence or all.
GroupGroup captures relationships between parent groups
and their children groups.

ElemGroup [EName, Gkey] StructInfo[whichMapl
AttGroup [AName,Gkey] GroupTable[GKey, TKey]
GroupInfo[GKey,GName,whichGroup] GroupField[GKey,FKey]
GroupGroup [GPKey,GCKey] GroupCLOB[GKey ,BKey]

TableInfo[TKey, TName]
FieldInfo[FKey,FName,TKey]
CLOBInfo[BKey ,BName]

When the mapping is parsed, the remaining tables are
populated. StructInfo contains information on structure
mapping. GroupTable associates groups with tables.
GroupField associates groups with fields. GroupCLOB asso-
ciates group with CLOBs. The last set of tables describe
the relational schema that is generated.

6. RELATED WORK

The schema adjunct framework described in [22] is a mech-
anism that associates XML fragments to an input XML
Schema by embedding mappings into the original schema.
The main difference between this work and ours is that map-
pings in the schema adjunct framework have to be embedded
in the original schema which has to be either a DTD or an
XML Schema. Therefore, schema-less documents cannot be
mapped using this framework. In addition, every single en-
tity in the original schema has to be explicitly mapped which
might make the specification of a mapping very long. Fi-
nally, the schema adjunct framework does not handle map-
pings of document structure.

The IBM solution for storing XML documents in the re-
lational system DB2 relies on a mapping schema [7]. This
schema is a simplified version of an XML schema where only
elements and attributes are used. Elements and attributes
can be annotated with the tables and fields to which they
are mapped. This solution assumes that the input schema is
given in the IBM format. It offers limited mappings because
it allows mapping elements and attributes only (groups can-
not be mapped) and does not allow to map elements to
field names. However, it allows the specification of arbi-
trary predicates to partition elements into multiple tables.
Our approach would need to be extended to support this
mechanism. Finally, the IBM solution does not provide an
APL

In the Rainbow system [24], XQuery is used to specify a
mapping. While this language is powerful enough to express
existing mappings, its specification would be much longer
and it is not clear how to use it for this purpose. Also, no
interface API is provided.

The work presented in [9] describes XML-to-relational
transformations that preserve constraints on DTDs. Our
mapping schema proposal does not handle constraints and
would need to be extended.

7. CONCLUSION

We presented MXM, a flexible XML-to-relational map-
ping schema. MXM could be used to map schema-less doc-
uments as well as documents that conform to either a DTD
or an XML Schema. MXM is designed in XML which makes
it easily extensible to express other mapping choices includ-
ing mapping XML data to a target system that is different
from the relational one. We also designed IMXM, an inter-
face to the information contained in a MXM mapping, the
source DTD or XML Schema and the generated relational
schema.

MXM and IMXM help sharing efforts when developing
loading and querying utilities on top of XML storage sys-
tems. In addition, they enable building applications for data
exchange between multiple stores in which XML data might
have been mapped differently.

We are currently investigating extensions to MXM to sup-
port additional mappings. We are also using IMXM to en-
able data transfer from one relational store to another.

8. REFERENCES

[1]

[20]

[21]
[22]

S. Al-Khalifa, H. V. Jagadish, N. Koudas,

J. M. Patel, D. Srivastava, Y. Wu. Structural Joins:
A Primitive for Efficient XML Query Pattern
Matching. ICDE 2002.

S. Amer-Yahia, M. Ferndndez. Techniques for Storing
XML (Tutorial). ICDE 2002.

S. Banerjee, V. Krishnamurthy, M. Krishnaprasad,
R. Murthy. Oracle8i - The XML Enabled Data
Management System. ICDE 2000.

D. Barbosa, A. Barta, A. Mendelzon, G. Mihaila,

F. Rizzolo, P. Rodriguez-Gianolli. ToX - The Toronto
XML Engine. International Workshop on
Information Integration on the Web, 2001.

P. Bohannon, J. Freire, P. Roy, J. Simeon. From
XML Schema to Relations: A Cost-based Approach
to XML Storage. ICDE 2002.

D. Chamberlin, J. Clark, D. Florescu, J. Robie,

J. Simeon, M. Stefanescu XQuery 1.0: An XML
Query Language.
http://www.w3.org/TR/query-datamodel/.

J. M. Cheng, J. Xu. XML and DB2. ICDE 2000.

A. Deutsch, M. Fernandez, D. Suciu. Storing
Semistructured Data with STORED. SIGMOD 1999.
D. Lee, W. Chu. Constraints-Preserving
Transformation from XML Document Type
Definition to Relational Schema. ER 2000.

D. Florescu, D. Kossman. A Performance Evaluation
of Alternative Mapping Schemes for Storing XML
Data in a Relational Database. IEEE Data Eng.
Bulletin 1999.

HL7. http://www.hl7.org/.

Online Computer Library Cen-

ter. Introduction to the Dewey Decimal Classification.

http://www.oclc.org/oclc/fp /about/about_the_ddc.htm.

OpenLDAP. www.openldap.org/.

M. Rys, Microsoft. Bringing the Internet to Your
Database: Using SQLServer 2000 and XML to Build
Loosely-Coupled Systems. ICDE 2001.

A. Schmidt, M. Kersten, M. Windhouwer, F. Waas.
Efficient Relational Storage and Retrieval of XML
Documents. WebDB 2000.

J. Shanmugasundaram, I. Tatarinov, E. Viglas,

K. Beyer, E. Shekita, C. Zhang. Storing and
Querying Ordered XML using a Relational Database
System. SIGMOD 2002.

J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, J. Naughton. Relational databases for
querying XML documents: Limitations and
opportunities. VLDB 1999.

T. Shimura, M. Yoshikawa, S. Uemura. Storage and
Retrieval of XML Documents using
Object-Relational Databases. DEXA 1999.

F. Tian, D. J. DeWitt, J. Chen, C. Zhang. The
Design and Performance Evaluation of Various XML
Storage Strategies. Wisconsin Database Group.
Technical Report 2001.

XML Schema Primer.
http://www.w3.org/ TR /xmlschema-0/.

Sources of XML Data. http://www.xml.org/.

S. Vorthmann, J. Robie, L. Buck. The Schema

Adjunct Framework.
http://www.extensibility.com /resources/saf_dec2000.htm.

[23] C. Zhang et al. On Supporting Containment Queries

in Relational Database Management Systems.
SIGMOD 2001.

[24] X. Zhang et al. Rainbow: Mapping-Driven XQuery

Processing System. SIGMOD Conference 2002.

