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ABSTRACT

In social network analysis terminology, affiliation networks are networks with two
distinct groups of nodes and can be found in many biological networks. We
explored three different kinds of affiliation networks and extracted biologically
relevant structures.

One affiliation network is from a systematic yeast gene perturbation
microarray experiment and we applied social network analysis methodologies,
quantifying various density, coreness and centrality measures. Genes
participating in larger number of processes were found to have functions
important for the survival of the yeast against various environmental
challenges. Deletion of essential genes was suggested to cause larger number
of genes to be significantly up or down regulated. We explored the network
structure made up of several sub-networks using core-periphery models to find
ancient pathways. Glycolysis and TCA cycles have relatively core positions in
the energy-—related processes of yeast.

Another affiliation network i1s formed from a systematic protein complex
profiling experiment and their combinatorial property was investigated. Cell
cycle, signaling and cell structure associated protein complexes share little
proteins within each functional group while maintaining diverse component
overlaps with complexes of other functional groups. On the other hand, RNA
metabolism, protein synthesis and transcription associated complexes utilize
many proteins in common both within each functional group and beyond each
functional group. And the former functional groups are placed in the periphery
while the latter functional groups form a core in a higher order organization
map of the yeast proteome based on the combinatorial nature of protein
complexes.

The other affiliation network is from chemotherapeutic susceptibility
profile data of cancer cell lines to different anti-cancer drugs. In the
multidimensional scaling visualization of cell lines and drugs using a geodesic
distance as a distance measure, drugs with the same known mechanism of
action are clustered together.

Key words: social affiliation network analysis, centrality, core-periphery
model, protein complex, geodesic distance
Student Number: 2002-20630
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1. INTRODUCTION

The current way of describing cellular processes are based on mechanical
concepts and each cellular process is regarded as a conveyer belt on which
many workers, 1.e. proteins, work to give products for the survival of a large
factory or a cell. Biology books are full of many such schematic figures, which
1s, of course, useful for illustrating life phenomena. However, this may
mislead. Each gene products or proteins have no concept of such processes as
DNA replication, apoptosis or signal transduction. They are just interacting
with each other without the intention of replicating DNA or transducing
signals. These purposeless interactions form the basis of life and may in fact
be a better description of life. Complex information exchanges between
cellular components keep life go on.

How can we describe this aspect of life? Let us pick the wisdom of social
analogy. We endow each gene with its functions from the point of cellular
processes like DNA replication and cell cycle control, just as we have our own
social roles defined with respect to the social groups like families and jobs.
We are in contact with people who share with us the same group
memberships, which is the basis of our personal contact and information
exchange. One interacts with its group members directly and indirectly and
the members are quite important in understanding him: we can know a man by
the company he keeps!

Describing the properties of individuals through its social relationship with
others has been the subject of study for social network analysts (Wasserman
and Faust, 1994). They try to find social 'stars' in different aspects and to
describe the network structure through various centrality measures and
navigate its unique structures by graph theoretic approaches. In its graph
representation, each node represents an individual and each edge social
interaction between two individuals. The presence or absence of interaction
between N individuals can be expressed as an Mby-/N binary matrix, i.e. 1 for
the presence and O for the absence of interaction. This matrix is called
one-mode matrix.

On the other hand, two-mode network represents the affiliation of a set of
actors with a set of social occasions. Many social network relations consist of
the linkages among actors through their joint participation in social activities
or membership in collectivities (i.e. events). Such networks of actors tied to
each other through their participation in events and events linked through
multiple memberships of actors, are referred to as affiliation networks



(Wasserman and Faust, 1994; Scott, 2000).

Affiliation network is represented as a matrix with binary relationship
between actors and events. If an actor is affiliated with an event, the binary
relation is given by 1 and otherwise 0 (see methods). Figure 1 shows an
example of such affiliation matrices with 18 actors and 12 events.

In the present study, we explored three different kinds of affiliation
networks to discover biologically relevant structures.

One affiliation network is derived from binarization of Rosetta yeast
compendium dataset. Rosetta yeast compendium dataset (Hughes et a/., 2000)
1s hitherto the most systematic approach to profile transcriptional behaviour of
yeast genes. Gene expression levels were measured in 300 different
conditions to investigate the impact of uncharacterized perturbations on the
cell like deletion mutations and drug treatments. Drug treatment works like
gene deletion as it usually blocks cellular processes just as a gene deletion
blocks cellular processes it is involved in.

Cohen et al. introduces the concept of ‘molecular phenotype’ of a gene as
the constellation of changes in gene profile after deletion of the gene (Cohen
et al, 2002). In Rosetta compendium dataset, each perturbation assigns more
than 6,000 genes into two groups, molecular phenotype of the disrupted gene
or non-molecular phenotype. This is why the Rosetta compendium dataset of
yveast genes is well suited for derivation of affiliation network. Genes or actors
will participate in one or more of the molecular phenotypes, or events! Genes
belonging to one molecular phenotype are assumed to communicate with each
other directly or indirectly because they are transcriptionally related.

This structural uniqueness of the Rosetta dataset led Rung et al to
construct, what they called, disruption networks and they analysed yeast
genome graph theoretically and showed that disruption network is scale-free
(Rung et al, 2002). Our social affiliation network analysis well includes the
results and gives additional insights into gene-to-gene communications.

Another affiliation network is formed from the protein complex profiling
data by Gavin et al (Gavin et al, 2002). In contrast to the first one, this
network reflects direct or indirect physical interactions among yeast genes.
Systematic analyses of protein complexes have been tried, the most extensive
of which is the profiling by Gavin AC et al and Ho et al/ (Gavin et al., 2002;
Ho et al, 2002). Gavin et al used tandem-affinity purification (TAP) and
mass spectrometry on a large-scale to identify and characterize protein
complexes in yeast. Here, protein complexes correspond to the events of
social affiliation network in which genes or actors physically interact. Most



cellular processes are carried out by protein complexes and its identification
and characterization gives insights into how the proteins are organized into
functional units (Dezso et al, 2003). Until recently, protein complexes like
spliceosome, cyclosome, proteasome and nuclear pore complexes are among
the well-known (Rout et al, 2000; Zachariae et al, 1996; Neubauer et al,
1997; Verma et al., 2000).

Meanwhile, a particular complex is not necessarily composed of invariable
protein members nor is any constituting molecule involved uniquely in that
specific complex. Gavin et a/ illustrated this aspect by linking complexes that
share components and derived a higher order network of multi-protein
complexes. This combinatorial aspect of utilizing molecular components can be
seen in the design of a protein molecule itself composed of conserved domains
or motifs that also comprise other kinds of protein molecules giving rise to
different functionality. In a likely manner, different molecular machines often
use the same protein to exert different functions (Gavin et a/., 2003).

We investigated this combinatorial nature at the level of protein complexes
by quantifying the degree to which a given complex is made up of exclusively
participating protein subunits both all through the functional groups and within
each functional group and present a higher order organization map of nine
functional groups based on protein component sharing.

Lastly, another advantage of affiliation network analysis is the two modes
can be concurrently considered to give insights into their relationship. There
have been attempts to classify or cluster tissues or genes based on
transcription profiles from microarray data. But they were within the group of
tissues or genes themselves and the trials to pool the two groups together and
then cluster or classify them have been relatively rare because of the
difficulty in measurement of distances between the two heterogeneous groups
(Butte et al, 2000). Using geodesic distance as distance measure, we made
an attempt to investigate the association among entities of the two distinct
groups and draw biologically and clinically relevant structures using the
chemotherapeutic susceptibility data of NCI 60 cancer cell lines to 118
anticancer drugs (Scherf er al, 2000).



2. DATA AND METHODS

2.1. Data pre-processing and formation of affiliation matrix

2.1.1. Rosetta compendium dataset

Rosetta Compendium dataset was downloaded from ExpressDB (Asch et
al, 2000). It is a compendium of expression profiles corresponding to 300
diverse mutations and chemical treatments (276 deletion mutants, 11
tetracycline regulatable essential genes, 13 chemical treatments) in S
cerevisiae. Excluding genes that have more than 20 missing values left 6,152
genes for analysis. A data matrix containing log expression ratio in each
condition was used for analysis. The matrix was normalized with respect to
conditions such that mean and standard deviation of each column log ratio
value was set to 0 and 1, respectively.

Generally whether a gene is differentially expressed in a condition is
determined in a biological sense by its fold ratio. Statistical significance has
also been used as a means of selecting differentially expressed gene in a large
dataset (Ihmels er al, 2002). We pooled the log ratio values to get a cutoff
for binarization process. Arbitrarily we obtained 5% quantile, Q0.05 and 95%
quantile, Q0.95 (i.e. -1.24 and 1.33, respectively) for the above normalized log
ratio values and used them for the cutoff value determining significant log
ratio.

Let Ei7 be the normalized (with respect to condition) log expression ratio
of gene 1 in condition j above. New data matrix A with Aij as its element is
given by: A = <Aj>,

0 (if Q< k< &5
Ai =
1 (f B <@s OorE >&3s

Gene or actor 71s affiliated with the molecular phenotype of gene mutation

or drug treatment condition jif A7 = 1 and is not affiliated if Az7 = 0.

2.1.2. Multi-protein complex dataset

Gavin et al. used tandem-affinity purification (TAP) and mass spectrometry
on a large scale and identified 232 distinct protein complexes in yeast (Gavin
et al., 2002). A total of 1353 genes constitute the complexes. The 232 protein
complexes are roughly assigned into nine functional groups according to YPD
and by literature mining in the original article. The numbers in the parentheses
are the number of protein complexes within each functional group.



(1) Cell cycle (13)

(2) Polarity and structure (8)

(3) Intermediate and energy metabolism (43)

(4) Membrane biogenesis and turnover (20)

(5) Protein synthesis and turnover (33)

(6) Protein/RNA transport (12)

(7) RNA metabolism (28)

(8) Signaling (20)

(9) Transcription/ DNA maintenance/chromatin structure (55)

A protein complex is defined to be ‘isolated’ if its compagirsubunit proteins
participate ‘exclusively’ in the specific complex. A protecomplex is less isolated if its
building blocks are parts of other complexes as well.

To quantify the degree to which a protein complex is isolathd ‘Isolation Index’ is
assigned for each compléx

For a complex there exists a set of genes, £{gene | gene is a sub component of
protein complex t} (t=1,2;-- , 232) and the 232 protein compkeare partitioned into nine
subsets of different functional groups, £1,2,:-,9 as depicted above.

First of all, from the original protein complex dataset wengeate a binary
1353 by 232 matribA = <g;>,

{ 1, ifthe gene i participates in the complex .
aj =

O , if the gene i does not participatetie complex j.

2.1.2.1 Whole category Isolation Index (Iws)
Whole category Isolation Index is defined for each compleot. a protein complex,
D is the sub matrix oA, whereD; = <g;>, i€ C;and j = 1, 2, , 232. We calculated the
distance of the data matrB; from the ideal pattern matri® = <g;>,
{ 1 iccadj=t
pi =

0,iccandjz t

, WhereP; represents a data matrix of an ideal protein complex whosgoaents are parts
of only the protein complex out of 232 complexes.

Pearson correlation coefficient is used as the distancsuneand the whole category
Isolation Index () is defined as the Pearson correlation coefficient betweandP. It
ranges from- 1 to 1 and the value closer to 1 signifies that pleeic complex is more



isolated among the 232 protein complexes.

2.1.2.2 Intra category Isolation Index (1)

In contrast to the whole category Isolation Index, intraegaty Isolation Index is
defined considering group membership of each complex. Asgy a protein complex
belongs to the functional groug the data matriXD;’ is the sub matrix ofA, whereD,’ =
<g>, i€ Ciand jE K. The ideal pattern matrix B’ = <p;’>,

1l iccandj=t
P =

O.icciandj* tandg &.

The Pearson correlation coefficient between the matrdésand P/ is the intra
category Isolation Index i) and the index closer to 1 means that the protein complex is
isolated and has less subunit proteins in common with otleeim complexes within the
same functional category.

2.1.3. Chemotherapeutic susceptibility data of NCI 60 cell lines

Chemotherapeutic susceptibility of NCI 60 cancer cell lines to 118
anticancer drugs were measured to give 60 by 118 matrix. The matrix
elements are -log10(Gls0) where Glso is the 50% growth inhibitory activities of
the 118 drugs in each cell line and the 118 drugs are chosen because their
mechanisms of action are putatively understood and used for cluster analysis
(Scherf et al., 2000).

A higher -log10(GI50) value means the cell line is more susceptible to the
drug and the -logi10(Gls0) data matrix is binarized into affiliation matrix by
giving 1 if a chemotherapeutic susceptibility of a cell line is more than the
(0.8*s.d.+ mean) value for each drug and 0 otherwise.(Staunton et a/., 2001)
Geodesic distance matrix is formed from the affiliation matrix. Based on the
geodesic distance matrix, metric multidimensional scaling into 2 dimensions
was performed for visualization.

2.2. Analysis of affiliation network
Affiliation matrix. Generally, an affiliation network consists of two key
elements: a set of actors and a collection of subsets of actors (called events).
It is represented as affiliation matrix A with elements,

1, if actor i participates in event |
Aij =

0, if actor i does not participate imemnt j



(see Fig 1. for example)
Bipartite matrix. In analysis of affiliation network, this matrix A is tranformed
into a bipartite square matrix B given by, (given N actors, M events and O
representing zero matrix)

O(NxN) A(Nx M)

AMxN) O(MxM)

Bipartite graph. A graph is bipartite if the vertices are partitioned in two
mutually exclusive sets such that there are no ties within either set and every
edge in the graph is an unordered pair of nodes in which one node is in one
vertex set and the other in the other vertex set. Bipartie graph is very useful
in representing two-mode network. This representation preserves the whole
informations in two-mode network. Figure 2 shows an example of the bipartite
graph representation. This representation preserves the whole informations in
two-mode network.

Geodesic. A shortest path between two nodes is referred to as a geodesic. A
geodesic distance matrix G = <Gij> represents geodesic distances between all
pairs of nodes in the graph. Geodesic distance matrix can also be drawn from a
bipartite graph. (See figure 3. for geodesic distance matrix of data in figure
1.)

2.2.1. Rates of participation
A;

Rate of participation of actor 7is given by 5 which implies how many
events an actor participates in. The more sociable an actor is, the more events
will he or she participate in. Likewise, the more interactions a gene has, the
more cellular processes will it participate in and might have a longer
evolutionary history.

2.2.2. Size of events

A

Size of event ; is given by 5 which implies how many actors

participate in the event ;s The larger events or cellular processes may be
those that facilitate interactions among actors or genes.

2.2.3. Node centrality measures and group centralization measures
For detailed description of the concept of centrality, refer to (Wasserman
and Faust, 1994;Scott, 2000;Faust, 1997;Borgatti and Everett, 1997). The



origin of this idea in social network analysis can be found in the concept of the
'star'- the person who is the most 'popular' in his or her group or who stands at
the center of attention. Group centralization index measures the extent to
which the graph is a star graph - there is one central node with the remaining
nodes considerably less central. Centrality measures were calculated using the
UCINET 6.0 software (Borgatti et al., 2002).

2.2.3.1. Node Degree centrality

This is the simplest definition of node centrality. The @miode must be the one who have the
most ties to other nodes in the network. In thetwo mode datar degree centrality is the number
of events an actor attended and event degree centralitg isttmber of actors participating in the
event.

Bij
Degree centrality of an actor 7/is given by ]

2.2.3.2. Node Closeness centrality

This measures how close a node is to all the other nodes. In two-mode
network represented by a bipartite graph, all paths consist of an alternating
series of nodes and edges of the form u-v-u'-v' and so on where u and u' are
from one vertex set and v and v' from the other. The closeness centrality of a
node was defined by Freeman and is inversely proportional to the total
geodesic distance from the node to all other nodes in the network.(Freeman,
1979)

e

Closeness centrality of an actor 7is given by [ ;

2.2.3.3 Node Betweenness centrality

This measures the probability that a communication or simply a path from
node ; to node & takes a particular route through a node iz All lines are
assumed to have equal weights. Let g7k be the number of geodesics linking the
two nodes jand k. Let gik(7) be the number of geodesics linking the two nodes
that contain node 7 In two-mode network, betweenness centrality is a function
of paths from actors to actors, events to events, actors to events and vice
versa.

_ o D gk g
Betweenness centrality of an actor 7is given by = .

2.2.4. Group centralization measures(degree, closeness or betweenness)
Group centralization measure is a group level measure of centrality. Let



C(/) be a node centrality index (degree, closeness or betweenness) and C(7)*
be the largest value of the indices across all nodes. The general form of group
centralization index is given by:

D Ictiy* -]

C

“maxy_ [C0)*-C)]

The maximum is taken over all possible graphs and the measure is, of
course, always between 0 and 1. The value 1 is attained when the graph is of
the form in figure 4(a) and 0 is assigned for a graph with the form in figure
4(b).

2.2.5. Core/Periphery structures

A common notion in social network analysis is the concept of a
core/periphery structure and a dense, cohesive core and a sparse, unconnected
periphery are sought. Borgatti et al. formalized the notion of core/periphery
structure and suggested both discrete and continuous models in detecting
core/periphery structure in network data and the computer package UCINET 6
incorporates the model (Borgatti and Everett, 1999). We adopted the
continuous model, which assumes the network has one core and assigns each
node a measure of 'coreness'. In UCINET 6, the value of coreness of node ;
¢, 1s obtained so as to maximize the matrix correlation between the data
matrix (in affiliation network, the bipartite matrix) and the pattern matrix, P,
the element of which is p; = cic,



3. RESULTS

3.1. On the society of yeast genome as revealed by perturbations

3.1.1. Whole genome view

3.1.1.1 Rate of participation

Table 1 shows the MIPS functional classifications of genes differentially
expressed in more than 150 out of 300 conditions. These genes are "social
stars" in yeast genome in that they participate in a large number of events and
are more likely to interact with larger number of other genes. The functional
categories of these 'star' genes are like the following.

1) Stress response

2) Amino acid biosysthesis

3) C-compound and carbohydrate biosynthesis
4) Small molecule transport

5) Osmoregulation

These functions are important for the survival of the yeast against various
environmental challenges and these genes may have longer evolutionary
history leading to large number of interaction with different kinds of genes
(Park and Bolser, 2001). As Rung et al. showed in their disruption network
approach, this rate of participation follows a power law (Rung et al, 2002).
The scale-free model predicts that the nodes that appeared early in the history
of the network are the most connected ones (Barabasi and Albert, 1999).

3.1.1.2. Size of events

Examples of gene deletions or drug treatments with large sizes are:
yor078w, erp4, ymrldlc, kar2, yel3 cdc42 rpllZa, cla4d-haploid, ymr0l4w,
argb, 6, gypl, dirl, rps24a, hesl-haploid idil, ymrO30w, krel, bub3, yhr0O11w,
ste20, ergll, Z-deoxy-D-glucose, TUNICAMYCIN, she4, yor006c, pac?Z,
makl0, cuel, cat8, hatZ, sirl, ymrZ285c, adel6, phdl-haploid, bubl-haploid,
erg4-haploid, yerO41w, prbl, aqyZ yml003w, rml2, hirZ2 msul ymlOllc,
topl-haploid, pmal, rorl-haploid, yor072w, yel033w, sap30 etc.

Functional categories of deleted genes are mostly related to: 1) ribosome
biogenesis, 2) lipid, fatty-acid and isoprenoid biogenesis, 3) transport, 4)
transcriptional control, 5) cell cycle 6) DNA synthesis and replication, 7)
budding and pheromone response. Although the specific kinds of genes whose
deletion strongly ‘wiggles’ the whole cellular transcriptional system is
somewhat different from those found by Featherstone et al. and Rung et al.



because we used different normalization process, it is not surprising that these
are essential cellular processes that are always switched on irrespective of
environmental stimuli (Featherstone and Broadie, 2002; Rung et al., 2002). A
larger number of genes may well be up or down regulated by the knock-out of
essential genes and the perturbation may be the direct result of the deletion
itself or the indirect one of the triggered mechanisms in compensation for the
gene disruption to keep one yeast from being lethal (Jeong et al., 2001). But
this direct and indirect impact is difficult to differentiate (Featherstone and
Broadie, 2002).

3.1.2. Analysis of genes participating in Energy related processes

We wanted to explore the structure of a specific network mageof several
sub networks. The MIPS database provides a catalogue ofidnat categories which
groups together genes with similar functions and we exgltie network of genes known
to participate in 'Energy’ related processes. The enetgiecegene network is composed
of 10 subgroups of genes assigned to the following functioategories. A total of 208
genes were included. The number in the parenthesis is theerushgenes participating in
the process. These genes have no missing values in Rosaipedium dataset and errors
from missing data were excluded.
1) Oxidation of fatty acid (6)
2) Fermentation (28)
3) Glycolysis and gluconeogenesis (28)
4) Glyoxylate cycle (5)
5) Pentose-phosphate pathway (9)
6) Metabolism of energy reserves (glycogen, trehalose) (33)
7) Respiration (70)
8) TCA cycle (20)
9) Other energy generation activities (13)
10) Energy transport (2)

3.1.2.1. Core/Periphery structure of Energy related genes
Figure 5 shows the distribution of coreness scores of genes in each
functional categories. The core/periphery model looks for strongly connected
component in a network and gives higher coreness scores for the more
connected actors and events. Genes participating in fatty acid oxidation and
energy transport are mostly placed in the periphery, whereas, glucose
metabolism related process (categories 3 and 6) contain core genes in energy



process and ATP generating processes (categories 2 and 8) occupy
intermediate position. ATP consuming process (Respiration) related genes
have relatively peripheral placement. Ancient pathways like Glycolysis and
TCA cycle have relatively core positions in the network (Wagner and Fell,
2001).

3.1.2.2. Graph centralization index

A graph with higher centralization index is more like a 'star' graph (see
figure 4a). According to table 2, the glyoxylate cycle gene group has the
highest degree and closeness centrality indices and has the most 'star' like
graph. In contrast, respiration process has the smallest degree, closeness and
betweenness centrality indices and has the least star-like structure.

Fatty acid oxidation has relatively small degree and closeness
centralization indices but it has unusually high betweenness centralization
index. YLR284C (ECI1) has the largest betweenness centrality score of all
the actors which means other actors depend on this gene to communicate with
each other and this gene product might have some control over the

interactions.

3.1.3. TCA cycle

Now let us focus on one of the sub-networks of energy related processes,
or TCA cycle. Figure 6. shows multidimesional scaling representation of TCA
cycle related genes and conditions. Genes are given in its enzyme names and
52 conditions (labeled with numbers for simplicity) were those that contain
more than 5 participating genes out of 20 genes.

Borgatti et al. pointed out geodesic distance matrix as an input for MDS
gives good visualization results and makes it easy to draw rough conclusions
at a glance (Borgatti and Everett, 1997). You'll find a core/periphery structure
especially among genes or actors. Table 3 lists the coreness scores of the 20
actors. The core group contains succinate dehydrogenase complex (SDHI,
SDH?2 and SDH4; SDH3 had missing value in expression data and excluded in
the analysis) and isocitrate dehydrogense complex (IDH1 and IDH2),
fumarase, aconitase and citrate synthase. Genes assigned to the core group
are well known TCA cycle related genes and those in the periphery group
have hitherto unspecified role in TCA cycle (see figure 7) and refer to
(Przybyla-Zawislak et al/, 1999). This might mean the core genes are more
exclusively dedicated to a specific process than the peripheral genes.



3.2. Exploring the combinatorics of protein complexes

Figure 8(a) shows the scatter plots of I, and I, for each protein complex
according to its functional group. Interestingly, we can observe two different
kinds of complexes. Some protein complexes have low whole category
Isolation Index but high intra category Isolation Index and are scattered in left
upper panel in each plot. Other complexes have little difference in the two
indices and are spread around the Y = X axis.

The former patterns of complexes are mostly found in processes like cell
cycle, polarity and structure and signaling, while the latter patterns of
complexes are the norms in the processes of transcription/DNA
maintenance/chromatin structure and RNA metabolism.

Cell cycle and signaling associated proteins generally form small
complexes of regulatory units. Their ultimate goal is to preserve, transfer or
amplify signals. The enrichment of these processes in complexes that have
significantly higher intra category Isolation Indices than the whole category
Isolation Indices gives the lesson; though the same protein component seems
to be used in different complexes with other functional annotations, the
sharing of components with complexes within the same functional category is
supposedly deterred to maximize and ensure the specificity of signaling.

On the other hand, the processes like transcription, mRNA processing and
translation are carried out by large molecular machines of various
transcriptional and translational complexes. These molecular machines carry
out large numbers of functions in concert both in time and space. For example,
in RNA polymerase II complex (reflected in a complex of 9" functional group
whose whole category and intra category Isolation Indices are 0.746267 and
0.805473 respectively), different combinations of five protein components
build the structures called jaw, clamp, cleft, shelf and funnel that works for its
attachment to DNA, the maintenance of the RNA-DNA duplex, the access of
template strand to the active site and its translocation along the strand
(Cramer et al., 2001; Gavin et al., 2003).

From the point of parsimony or considering the diverse number of
functions to be carried out with the limited number of protein components, it
i1s of course waste of resources to invent different exclusively composed
machines to perform so many different functions. Instead, the cell seems to
have evolved to utilize different combinations of protein components to
perform various tasks to keep its life go on.

Figure 8(b) gives a higher order map of nine functional groups; the closer



the groups are, the more protein components are held in common.
Transcription, RNA metabolism and protein synthesis and turnover are
strongly interconnected from the point of shared components and occupy core
positions. But the processes with the significantly different whole category
and intra category Isolation Indices like polarity and structure, cell cycle and
signaling are placed in the periphery.

This map of functional groups is in contrast with its counterpart map of
functional groups based on direct binary protein interactions suggested by
Schwikowski et al. (Schwikowski et al., 2000). They found cell cycle control
process shows the most interactions with other classes and is placed in core
positions in the network of different functional groups. The different aspects
reflected in each map account for the discordance.

Quantifying the combinatorial property of gene groups or protein groups
such as clusters from microarray experiments or pathways with the
above-introduced method will help in entangling the basically combinatorial
phenomenon, the ‘pleiotropy’.



3.3. The chemotherapeutic susceptibility of cancer cell lines

Figure 9(a) shows the multidimensional scaling map of the geodesic
distance among cell lines and chemotherapeutic drugs based on GI50 data and
figure 9(b) gives the legends for each cell line and drug of figure 9(a). The
strategy of multidimensional scaling of geodesic distance matrix has often
been used to explore gene expression data.(Nilsson et al, 2004 )

In figure 9(a), plus signs are cell lines while the rectangular drugs are
colored in different ways after their known mechanisms of action. According
to the hierarchical clustering result by Staunton et al, drugs with similar
known mechanism of action assemble together and our multidimensional map
expectedly also provides visual confirmation of this point in two dimensions
(Staunton et al., 2001). Like the result by Staunton et a/., tubulin inhibitors
(in red) form a tight cluster. Geldanamycin (No. 115) and Bisantrene (No. 49)
are among the tubulin inhibitors and this is proposed to be from the
involvement of Geldanamycin in G1 cell cycle arrest like taxane, the popular
tubulin inhibitor. And 5-FU (No. 86), an anti-metabolite, is known to inhibit the
RNA synthesis not just the DNA synthesis and is placed close to the Rs (RNS
synthesis inhibitor, brown color). Topoisomerase 1 inhibitors (T1) are
scattered near DNA synthesis inhibitors (Ds) which reflects the fact
Camptothecin’s cytotoxicity is based on DNA replication process or
‘replication fork encounter lesions.’

We can further investigate the relationship between the two different
groups of cell lines and drugs. For example, 5-FU is adjacent to the colon
cancer cell lines as if reflecting its common use in patients with colon cancer.
The usually prescribed primary regimen for ovarian cancer is the combination
of paclitaxel, cisplatin, carboplatin and ovarian cancer cell lines are mixed with
taxol associated tubulin inhibitor (TU) group and cisplatin related alkylating
agent (A7) group. But in determining the chemotherapeutic regimen for
treating cancer patients, various factors other than cancer types are taken into
account and these multidimensional scaling results have limitations in that it is
solely based on the in vitro chemotherapeutic susceptibility of cell lines to
drugs.



4. DISCUSSION

We have investigated various affiliation networks from systematic profiling
experiments like the perturbation based microarray experiment, multi-protein
complex purifications and chemotherapeutic susceptibility profiling of cancer
cell lines. And we extracted strongly connected group in disruption networks
by applying core/periphery model of social network analysis methodology,
quantified the isolatedness of a molecular complex and visualized the
relationship between cancer cell lines and drugs. These approaches have
revealed biologically relevant structures in various respects.

Of course, in addition to the hitherto investigated networks, there are
numerous other two-moded data in biological literatures; transcriptional factors
vs. their downstream regulated genes, structural motifs vs. protein molecules
and many others.

Network analyses are usually conducted within each one mode and the
structures between two modes are ignored after all. But thus-far introduced
two modes investigation methodologies will add up insights from different
viewpoints and be an indispensable step in deciphering the system of life.
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Fig. 1. One example of an affiliation matrix with 18 actors and 12 events.

Fig. 2. Bipartite graph representation of an affiliation matrix. Left vertices are actors

and right ones events.
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Fig. 9(a). Metric 2 dimensional MDS of geodesic distance matrix
1:A2, Mitomycir 60:Db, Cyanomorpholinodoxorubic BR1-BR:MCF

2:A2, Porfiromycin

3:A6, Carmustine (BCNU)
4:A6, Chlorozotocin

5:A6, Clomesone

6:A6, Lomustine (CCNU)
7:A6, Mitozolamide

8:A6, PCNU

9:A6, Semustine (MeCCNU)
10:A7 ,Asaley

11:A7, Busulfan

12:A7, Carboplatin

13:A7, Chlorambucil

14:A7, Cisplatin

15:A7, Cyclodisone

16:A7, Diaminocyclohexyl Pt Il
17:A7, Dianhydrogalactitol
18:A7, Diaziridinylbenzoquinone
19:A7, Fluorodopan
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31:A7, Triethylenemelamine
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33:A7, Yosht 864

61:Db, Hycanthone

62:Db, Morpholine adriamycin
63:Db, NN Dibenzyl daunomycin
64:Db, Pyrazoloacridine

70:Df, Aminopterin

71:Df, Aminopterin derivative
72:Df, Aminopterin derivative
73:Df, an antifol

74:Df, an antifol

75:Df, Baker's soluble antifolate
76:Df, Methotrexate

77:Df, Methotrexate derivative
78:Df, Trimetrexate

82:Ds, Aphidicolin glycinate
83:Ds, Cyclocytidine
84:Ds, Cytarabine (araC)
85:Ds, Floxuridine (FUdR)
86:Ds, Fluorouracil (5FU)
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88:Ds, Thiopurine (6MP)
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BR7-BR:BT-549
BR8BR:T-47D
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CNS2 CNS:SNB 75
CNS3 CNS:U251
CNS4 CNS:SF 268
CNS5 CNS:SF 295
CNS6 CNS:SF 539
COLCO:HT29
CO2 CO:HCC 2998
CO3 CO:HCT 116
CO4CO:SW 620
CO5CO:HCT 15
CO6 CO:KM12
CO7CO:COLO205
LC1-LC:NCI-H23
LC2LC:NCIFH522
LC3-LC:A549/ATCC
LC4LC:EKVX
LC5LC:NCFH322M
LC6LC:NCIFH460
LC7-LC:HOP 62
LC8&LC:HOP 92
LCY-LC:NCFH226
LE1-LE:CCRF CEM
LE2-LE:K-562
LE3-LE:MOLT4




93:Rs, N phosphonoacetyt L aspartic ¢ LE4-LE:SF

94:Rs, Pyrazofurin LE5LE:HL-60
95:TU, Colchicine LE6-LE:RPMI8226
96:TU, Colchicine derivative ME1-ME:LOXIMVI

97:TU, Dolastatin 10
98:TU, Halichondrin B
99:TU, Maytansine
100:TU, Tritykcysteine

ME2-ME:MALME-3M
ME3-ME:SK-MEL-2
ME4-ME:SK-MEL-5
MES5-ME:SK-MEL-28

101:TU, Vinblastine sulfate ME6-ME:M14
102:TU, Vincristine sulfate ME7-ME:UACC 62
103:TU, Taxol (Paclitaxel) ME8-ME:UACC 257
104:TU, Taxol analog OV1-OV.OVCAR 3
105:TU, Taxol analog OV2-OV:OVCAR-4
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107:TU, Taxol analog

OV3-OV.OVCAR 8
OV4-0V:IIGROV1

108:TU, Taxol analog OV5-0V:SK-OV-3
109:TU, Taxol analog OV6-OV:OVCAR 5
110:TU, Taxol analog PRI PR:PC 3
111:TU, Taxol analog PR2 PR:DU 145
112:TU, Taxol analog REIRE:UO 31
113:TU, Taxol analog RE2 RE:SN12C
114:TU, Taxol analog RE3 RE:A498
115:P90, Geldanamycin RE4 RE:CAKF1
116:Uk, 3 Hydropicolinaldehyde thiosemicarbazone RE5 RE:RXF 393
117:Uk, 5 Hydroxypicolinaldehyde thiosemicarbazone RE6 RE:786 0
118:Uk, Inosine glycodialdehyde RE7RE:ACHN
RE8 RE:TK 10

Alkylating agents: A2, A7 = alkylating atN 2,-N 7 position ofignine, respectively; A6 = alkylating at O 6 position of ginen T1 = topoisomerast
inhibitor; T2 = topoisomerase Il inhibitor; Db = DNA bindeDj = DNA incorporation; Df: antifols; Dr = ribonucleotide dectase inhibitor; Ds = DNA
synthesis inhibitor; Rs = RNA synthesis inhibitor; Tu = tlibtactive antimitotic agents; Pi = protein synthesis irtuilh P90 = hsp90 binder; Uk =
unknown

BR: breast cancer CNS: CNS tumor CO: colon cancer LC: lungeranE: leukemia ME: melanoma OV: ovarian cancer PR: prestahcer

RE: renal cell cancinoma_Cell lines are represented with ign:

Fig. 9(b). Legend for figure 9(a)



Tablel. MIPS functional category

conditions
YBRO72W
11.01 STRESS RESPONSE
YBR145W
01.05.01 C-COMPOUND AND CARBOHYDRATE
UTILIZATION
2.16 FERMENTATION
11.07 DETOXIFICATION
YBR296C
01.04.07 PHOSPHATE TRANSPORT

13.01.01.99 HOMEOSTASIS OF OTHER CATIONS
13.01.03.03 HOMEOSTASIS OF PHOSPHATE

67.04.07 ANION TRANSPORTERS (CL, S04, PO4, ETC.)
YCLO18W
01.01.01
YERO69W
01.01.01
YFLO14W
01.05.01 C-COMPOUND AND CARBOHYDRATE
UTILIZATION

01.06.07 LIPID, FATTY-ACID AND ISOPRENOID
UTILIZATION

03.01.05.01 DNA REPAIR

AMINO ACID BIOSYNTHESIS

AMINO ACID BIOSYNTHESIS

11.01 STRESS RESPONSE

13.11.03.13 OSMOSENSING

YFRO30W

01.01.01 AMINO ACID BIOSYNTHESIS

01.02.01 NITROGEN AND SULFUR UTILIZATION
YFR053C

01.05.01 C-COMPOUND AND CARBOHYDRATE
UTILIZATION

2.01 GLYCOLYSIS AND GLUCONEOGENESIS
YGL255W

13.01.01.01 HOMEOSTASIS OF METAL IONS (NA, K, CA
ETC.)
67.04.01.01 HEAVY METAL ION TRANSPORTERS (CU, FE,

ETC.)

YHRO018C

01.01.01 AMINO ACID BIOSYNTHESIS

YHR137W

01.01.04 REGULATION OF AMINO ACID METABOLISM
YHR215W

01.04.01 PHOSPHATE UTILIZATION

40.27 EXTRACELLULAR / SECRETION PROTEINS
YIR034C

01.01.01 AMINO ACID BIOSYNTHESIS

YJLO88W

01.01.01 AMINO ACID BIOSYNTHESIS

YJL153C

01.05.01 C-COMPOUND AND CARBOHYDRATE
UTILIZATION

YJR025C

01.01.10 AMINO ACID DEGRADATION (CATABOLISM)
01.07.01 BIOSYNTHESIS OF VITAMINS, COFACTORS, AND

PROSTHETIC GROUPS

of genes differentially expressed in more than

150

YML123C
01.04.07 PHOSPHATE TRANSPORT
8.19 CELLULAR IMPORT

13.01.01.03 HOMEOSTASIS OF PROTONS
13.01.03.03 HOMEOSTASIS OF PHOSPHATE

67.04.07 ANION TRANSPORTERS (CL, SO4, PO4, ETC.)
67.07 C-COMPOUND AND CARBOHYDRATE
TRANSPORTERS

YMRO062C

01.01.01 AMINO ACID BIOSYNTHESIS

YMR094W

03.03.01 MITOTIC CELL CYCLE AND CELL CYCLE CONTROL
YMRO095C

11.01 STRESS RESPONSE

YMRO96W

3.99 OTHER CELL DIVISION AND DNA SYNTHESIS
ACTIVITIES

11.01 STRESS RESPONSE

YMR105C

01.05.01 C-COMPOUND AND CARBOHYDRATE UTILIZATION
2.19 METABOLISM OF ENERGY RESERVES (GLYCOGEN,
TREHALOSE)

YNLO36W

8.16 EXTRACELLULAR TRANSPORT, EXOCYTOSIS AND
SECRETION

YNL160W

11.01 STRESS RESPONSE

40.27 EXTRACELLULAR / SECRETION PROTEINS
YOL0O58W

01.01.01 AMINO ACID BIOSYNTHESIS

01.02.01 NITROGEN AND SULFUR UTILIZATION

YPLO19C

8.13 VACUOLAR TRANSPORT

YPR160W

01.05.01 C-COMPOUND AND CARBOHYDRATE UTILIZATION
2.19 METABOLISM OF ENERGY RESERVES (GLYCOGEN,
TREHALOSE)

YPR167C

01.01.01 AMINO ACID BIOSYNTHESIS

01.02.01 NITROGEN AND SULFUR UTILIZATION

YJR109C

01.01.01 AMINO ACID BIOSYNTHESIS

YKL001C

01.01.01 AMINO ACID BIOSYNTHESIS

01.02.01 NITROGEN AND SULFUR UTILIZATION

YKLO96W

40.01 CELL WALL

YLR303W

01.01.01 AMINO ACID BIOSYNTHESIS



Table 2. Graph centralization index

Process

Degree centr.(%)(homogeniety) Closeness centr.(%) Betweenness centr.(%)

fatty acid oxidation
fermentation
glycolysis
glyoxylate cycle
pentose phosphate
energy reserves
respiration

TCA cycle

All actors

26.22 (5.22%) 26.99
28.32 (1.46%) 18.99
45.81 (1.50%) 24.84
52.39 (6.66%)
45.56 (3.54%) 30.84
49.94 (1.41%)
22.78 (0.64%) 21.16
43.79 (1.96%) 26.99
26.49 (0.29%) 21.59

33.23
31.23

66.13
16.29
24.74

46.38
8.57

33.68
4.11

49.35
24.50

Table 3.Coreness scores of 20 actors of TCA cycle.

Core Periphery

SDH1 0.308 FRDS1 0.144
ACO1 0.308 LPD1 0.144
CIT1 0.298 MDH1 0.135
IDP1 0.288 LSC1 0.125
LSC2 0.269 PTM1 0.106
IDH2 0.259 KGD1 0.086
IDH1 0.211 KGD2 0.067
SDH4 0.202 CIT3 0.067
FUM1 0.192 OSM1 0.048
SDH2 0.163 IDP2 0.048
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