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Nudix Hydrolase 15 (NUDT15) and Thiopurine S-Methyltransferase (TPMT) are strong 
genetic determinants of thiopurine toxicity in pediatric acute lymphoblastic leukemia 
(ALL) patients. Since patients with NUDT15 or TPMT deficiency suffer severe adverse 
drug reactions, star (*) allele-based haplotypes have been used to predict an optimal 
6-mercaptopurine (6-MP) dosing. However, star allele haplotyping suffers from insufficient, 
inconsistent, and even conflicting designations with uncertain and/or unknown functional 
alleles. Gene-wise variant burden (GVB) scoring enables us to utilize next-generation 
sequencing (NGS) data to predict 6-MP intolerance in children with ALL. Whole exome 
sequencing was performed for 244 pediatric ALL patients under 6-MP treatments. We 
assigned star alleles with PharmGKB haplotype set translational table. GVB for NUDT15 
and TPMT was computed by aggregating in silico deleteriousness scores of multiple coding 
variants for each gene. Poor last-cycle dose intensity percent (DIP < 25%) was considered 
as 6-MP intolerance, resulting therapeutic failure of ALL. DIPs showed significant differences 
( p < 0.05) among NUDT15 poor (PM, n = 1), intermediate (IM, n = 48), and normal (NM, 
n = 195) metabolizers. TPMT exhibited no PM and only seven IMs. GVB showed significant 
differences among the different haplotype groups of both NUDT15 and TPMT ( p < 0.05). 
Kruskal–Wallis test for DIP values showed statistical significances for the seven different 
GVB score bins of NUDT15. GVBNUDT15 outperformed the star allele-based haplotypes in 
predicting patients with reduced last-cycle DIPs at all DIP threshold levels (i.e., 5%, 10%, 
15%, and 25%). In NUDT15-and-TPMT combined interaction analyses, GVBNUDT15,TPMT 
outperformed star alleles [area under the receiver operating curve (AUROC) = 0.677 vs. 
0.645] in specificity (0.813 vs. 0.796), sensitivity (0.526 vs. 0.474), and positive (0.192 vs. 
0.164) and negative (0.953 vs. 0.947) predictive values. Overall, GVB correctly classified 
five more patients (i.e., one into below and four into above 25% DIP groups) than did 
star allele haplotypes. GVB analysis demonstrated that 6-MP intolerance in pediatric ALL 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00654
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00654&domain=pdf&date_stamp=2019-06-11
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://creativecommons.org/licenses/by/4.0/
mailto:juhan@snu.ac.kr
https://doi.org/10.3389/fphar.2019.00654
https://www.frontiersin.org/article/10.3389/fphar.2019.00654/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00654/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00654/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00654/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00654/full
https://loop.frontiersin.org/people/670220
https://loop.frontiersin.org/people/715287
https://loop.frontiersin.org/people/641562


Gene-Wise Variant Burden ScoringPark et al.

2 June 2019 | Volume 10 | Article 654Frontiers in Pharmacology | www.frontiersin.org

INTRODUCTION

6-Mercaptopurine (6-MP) is a commonly used drug in the 
maintenance therapy of pediatric acute lymphoblastic leukemia 
(ALL). Since patients have a potential to experience medication-
induced life-threatening side effects including bone marrow 
suppression and hepatotoxicity, providing a tailored drug dosing 
regimen is essential in clinical practice (Vogenberg et al., 2010). 

One of the strongest ways to determine initial 6-MP dose is an 
experimental assessment of potential for drug adverse reactions, 
such as severe neutropenia by monitoring 6-MP metabolite 
concentration or using in vitro activity profiles (Dubinsky et 
al., 2000; Ansari et al., 2002; Cuffari, 2005; Bradford, 2011; 
Supandi et  al., 2018). However, applying such methods into 
routine clinical practice for predicting drug-induced toxicity 
is still challenging because it is extremely time-consuming, 
expensive, and inefficient (González-Lama and Gisbert, 2016).

As recent studies have demonstrated the strong association 
between genetic polymorphisms and inter-individual variability 
in 6-MP dose intensity, approaches to predict drug tolerance on 
the basis of individual genomic profiles have arisen. The primary 
genetic determinant of thiopurine toxicity is TPMT, which plays a 
crucial role in identifying patients in need of treatment modification 
with reduced enzyme activity (Lennard, 2014). However, this has 
not been applicable to East Asian populations since the frequency 
of TPMT polymorphisms varies by ethnicity (Relling et al., 2013). 
Recently, a novel pharmacogenetic marker, NUDT15, has clarified 
its role in predicting thiopurine toxicity in Asian populations (Yang 
et al., 2014; Yang et al., 2015; Zgheib et al., 2016; Kakuta et  al., 
2017). Clinical Pharmacogenetics Implementation Consortium 
(CPIC) published an updated guideline for thiopurine dosing 
based on both TPMT and NUDT15 genotypes using the star 
allele-based dose prediction method (Relling and Klein, 2009; 
Relling et al., 2018). This prevailing method provides therapeutic 
recommendations for dosing based on star allele genotypes. 
However, the utilization of star alleles in clinical practice has 
many obstacles that occur mainly due to 1) the extremely complex 
nomenclature system, 2) the limited resolution of phenotype 
prediction due to many unknown and uncertain function alleles, 
3) ignorance of functional impacts of rare and/or novel variants, 
and 4) limited use in previously studied populations only (Robarge 
et al., 2007). Next-generation sequencing (NGS) challenges the 
conventional star alleles on the basis of genotyping technologies 
and clinical studies in case–control settings.

In the era of NGS, the comprehensive genotyping capabilities 
of NGS platform have enabled us to capture the true diversity of 
gene variation, and researchers propose alternative ways to predict 
individual intolerance towards a drug. One promising method 
is a gene-wise variant burden (GVB) scoring approach that can 

calculate gene-wise cumulative variant deleteriousness scores 
including common, rare, and even novel genetic variants for each 
gene (Lee et al., 2016). Here, we assessed the utility of GVB scoring 
method in quantifying the potential contributing effect of variants 
on enzymatic activity. By combining the clinically proven and 
well-established associations between the two genes, i.e., NUDT15 
and TPMT, and 6-MP dose intensity percent (DIP, actual/planned 
dose) as a clinical endpoint, we performed a comparison study of 
the conventional star allele-based haplotyping and GVB scoring 
methods for predicting the last-cycle 6-MP DIP as an indicator for 
6-MP intolerance of ALL patients with NUDT15 and/or TPMT 
deficiency. Overall, both star alleles and GVB showed significant 
correlations with 6-MP DIP values. Star allele-based haplotype 
groups showed significant correlation with GVB score groups. 
For predicting reduced last-cycle DIP values, GVB analysis 
outperformed the conventional star allele method for NUDT15 
and showed comparable result for TPMT. In NUDT15-and-TPMT 
combined interaction analyses, GVBNUDT15,TPMT outperformed 
star allele-based predictions [area under the receiver operating 
curve (AUROC) = 0.677 vs. 0.645] in specificity (0.813 vs. 0.796), 
sensitivity (0.526 vs. 0.474), and positive (PPV; 0.192 vs. 0.164) and 
negative (NPV; 0.953 vs. 0.947) predictive values. It is demonstrated 
that gene-wise evaluation of in silico deleterious variant score 
burden can be a useful method for predicting 6-MP intolerance 
in pediatric ALL patients, considering NGS-based common, 
rare, and novel variants concurrently while not hampering the 
predictive power of the conventional haplotype analysis.

MATERIALS AND METHODS

Patients and Clinical Data Collection
A total of 298 Korean pediatric ALL patients with 6-MP treatment 
during maintenance therapy were recruited in the present study 
from two major teaching hospitals, i.e., Asan Medical Center 
(AMC) and Seoul National University Hospital (SNUH). Of the 298 
subjects, 244 individuals who did not meet the exclusion criteria 
(i.e., relapse of the disease, stem cell transplantation, Burkitt’s 
lymphoma, mixed phenotype acute leukemia, infant ALL, or very 
high risk) were selected. All participants provided written informed 
consent. The study was approved by the AMC Review Boards and 
the SNUH Review Boards. The 6-MP dose per meter body surface 
area over a 12-week cycle was recorded. The maximum tolerated 
dose of 6-MP was defined as the dose at the last maintenance cycle 
for each patient. Patients from two hospitals had received treatment 
under the same treatment protocol and dose adjustment guidelines 
to maintain the ANC levels within target levels (500–1,500/µL). 
Genotype-guided dose modification was not conducted. Additional 
demographic data are shown in Table 1.

can be reliably predicted by aggregating NGS-based common, rare, and novel variants 
together without hampering the predictive power of the conventional haplotype analysis.

Keywords: 6-mercaptopurine, drug toxicity, variant burden, pharmacogenetics, pharmacogenomics, next-
generation sequencing, Nudix Hydrolase 15 (NUDT15), Thiopurine S-Methyltransferase (TPMT)
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Data Generation and Sequencing
Exome sequencing was performed using Ion AmpliSeq™ Exome 
panel to screen coding sequence region of entire genome. This panel 
included the exome of 19,072 genes and the size of the total targeted 
region was 57.7 Mb. The panel contained 293,903 primer pairs that 
were multiplexed into 12 pools to avoid primer-dimer formation 
and interference during PCR. The range of amplicons amplified by 
these oligo primer pairs ranged from 125 to 275 bp, and the rate of 
“on target” coverage for this panel was 95.69%. PCR assays were 
performed directly to amplify 100 ng of genomic DNA samples 
extracted from normal blood cells in bone marrow aspirates or 
peripheral blood so as to collect the target regions using the oligo 
primer pairs of the panel. Reaction parameters were as follows: 99°C 
for 2 min, followed by 10 cycles of 99°C for 15 s, 60°C for 16 min, 
and 10°C for 1 min. After amplification, library construction 
was performed by using the Ion AmpliSeq library kit plus as 
described in the manufacturer’s instructions (Thermo Scientific, 
Waltham, MA). Libraries were quantified using an Agilent 2100 
Bioanalyzer (Agilent, Santa Clara, CA) and then diluted to ~10 pM. 
Subsequently, 33.3 μL of the barcoded libraries was combined in 
sets of three barcodes. The combined libraries were sequenced 
using the Ion Proton platform with PI chip V3, following the 
manufacturer’s instructions (Thermo Scientific, Waltham, 
MA). Reads were mapped to the human reference genome build 
(hg19) with a mapping alignment program from Thermo Fisher 
(version  4.4, Torrent Suite Software) on germ-line and low 
stringency settings (minimum observed allele frequency required 
for a non-reference variant call is 0.18 for single-nucleotide variant 
(SNV) and 0.23 for InDel, minimum phred scales call quality is 14 
for SNV and 19 for InDel, minimum coverage for called variants is 
35 for SNV and 40 for InDel, and maximum strand bias is 0.95 for 
SNV and 0.75 for InDel). Single-nucleotide variants (SNVs) and 
short insertions/deletions (InDels) were identified via Genome 
Analysis Toolkit (GATK) 2.8-1 Unified Genotyper (DePristo 
et  al., 2011). To estimate the pathogenicity of variants, two 
in silico variant deleteriousness prediction scores were annotated: 
sorting intolerant from tolerant (SIFT) (Ng, 2003) and combined 
annotation dependent depletion (CADD) (Kircher et al., 2014). 
The protein-coding gene region was defined using ANNOVAR 

(http://annovar.openbioinformatics.org/) (Wang et al., 2010). 
All the variants identified in 244 ALL samples are described in 
Supplementary Table S1 and S2.

Calculation of Gene-Wise Variant 
Burden Score
Gene-wise deleterious variant burden was computed for NUDT15 
and TPMT as described by Lee et al. (2016) and Seo et al. (2018). 
Under the hypothesis that variants that have potential effects 
to change protein function not necessarily guarantee but have 
power to cause harmful phenotypes, only variants with SIFT 
scores less than 0.7 were further considered. 

 G v vi = { |      . }with a SIFT score less than 0 7  

As SIFT does not provide functional scores for InDels, adjv for 
all InDel variants were assigned as 1e-8 under the hypothesis that 
InDels are more deleterious than single-nucleotide substitutions. 
Considering the dosage effects, adjusted SIFT score adjv was 
calculated for each variant according to their genotype. 
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TABLE 1 | Clinical characteristics of study subjects.

Characteristics Study cohorts

AMC SNUH Total

No. of subjects 95 149 244
Age at diagnosis (year), mean ± SD† 5.23 ± 1.8 8.57 ± 4.6 7.26 ± 4.1
Sex
 Male 52 93 145
 Female 43 56 99
Last-cycle 6-MP dose (mg/m2/day), mean ± SD (N)
 6-MP < 12.5 8.14 ± 1.7 (2) 6.25 ± 2.9 (4) 6.88 ± 2.6 (6)
 12.5 ≤ 6-MP < 25 17.39 ± 3.4 (4) 19.40 ± 3.6 (9) 18.78 ± 3.7 (13)
 25 ≤ 6-MP < 37.5 32.19 ± 3.4 (10) 30.72 ± 4.0 (16) 31.28 ± 3.8 (26)
 37.5 ≤ 6-MP < 50 44.52 ± 3.7 (13) 45.80 ± 3.5 (14) 45.18 ± 3.6 (27)
 6-MP ≥ 50 79.15 ± 18.1 (66) 78.84 ± 23.1 (106) 78.96 ± 21.3 (172)
 Total 65.37 ± 26.6 (95) 65.03 ± 30.0 (95) 65.16 ± 28.7 (244)

†Data for age at diagnosis were not available for one subject. 6-MP, 6-mercaptopurine; AMC, Asan Medical Center; SNUH, Seoul National University Hospital.
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We obtained GVBg values for each individual ranging from 0 
to 1. To predict 6-MP sensitivity, GVBNUDT15,TPMT was generated 
by calculating the geometric mean of GVBNUDT15 and GVBTPMT.

 GVB GVB GVBNUDT TPMT NUDT TPMT15 15
1
2, ( )       = ×  

Prediction of Star Allele Diplotypes for 244 
Acute Lymphoblastic Leukemia Samples
To classify 244 ALL samples into three metabolizer groups, we 
inferred haplotypes using the PHASE 2.1.1 software (Stephens 
et al., 2001; Stephens and Scheet, 2005) (Supplementary Figure 
S3). On the basis of the inferred haplotype information, we 
extracted star alleles that matched the haplotype set translational 
table from PharmGKB (https://www.pharmgkb.org/) (Whirl-
Carrillo et al., 2012). Predicted genotypes were translated into 
molecular phenotypes on the basis of the coded  genotype–
phenotype translation tables from Moriyama et al. (2016) for 
NUDT15 and from PharmGKB tables for TPMT. 

Estimation of Diagnostic Accuracies 
by Receiver Operating Curve Analyses
To assess prediction accuracies, we calculated DIP, the percentage 
of the actual administered dose to the planned dose, as an index 
for 6-MP drug toxicity. Dose in the last maintenance cycle was 
used, since the doses of 6-MP in the final maintenance cycle 
were supposed to be the maximum tolerated doses for patients 
(Kim et al., 2012). DIP prediction accuracies of GVB (GVBNUDT15, 
GVBTPMT, and GVBNUDT15,TPMT) and star allele-based predictions 
were compared using AUROC analysis with the R language 
pROC package (Robin et al., 2011). We computed specificity, 
sensitivity, PPV, and NPV under the binary classification model 
with nine different cutoff levels (i.e., 5%, 10%, 15%, 25%, 35%, 
45%, 60%, 80%, and 100%) for defining high-risk DIP groups. All 
statistical analyses were performed using R version 3.5.1.

RESULTS

Relation of Gene-Wise Variant Burden and 
Star Allele-Based Molecular Phenotypes
NUDT15 and TPMT haplotypes of each subject were first 
inferred from whole exome sequencing (WXS) data by using 
the PHASE tool, and matched star allele genotypes were 
assigned for each subject. The star allele genotypes were then 
translated into three molecular phenotype groups according to 
their allele combinations; poor (PM, No function|No function), 
intermediate (IM, Normal|No function or Normal|Decreased), 
and normal (NM, Normal|Normal) metabolizers. Six and four 
star alleles were identified for NUDT15 and TPMT genes, 
respectively, from the 244 ALL patients with their frequencies 
(Table 2). Table  3 shows the distribution of subsequently 
predicted enzymatic metabolizer phenotypes for NUDT15 and 
TPMT among the 244 ALL patients.

While 49 (20.1%) of 244 ALL patients were classified into 
non-NM (one PM and 48 IMs) phenotype for NUDT15, only 

seven (2.9%) IMs were identified for TPMT, reflecting ethnic 
variation of NUDT15 and TPMT variants, in a consistent manner 
(Table 3). Since individuals with TPMT homozygous mutant 
alleles are rarely observed in East Asian population, none of the 
patients were classified into the poor metabolizer group. IMs were 
stratified into two groups: 1) individuals carrying one copy of a 
normal function allele and one copy of a decreased function allele 
and 2) individuals carrying one copy of a normal function allele 
and one copy of no function allele. Carriers of non-functional 
allele, compared with carriers of decreased function allele, are 
considered to be at an increased risk for functional decline.

Patients with NUDT15 normal metabolizing alleles (DIP  = 
67.608 ± 28.2, n = 195) tolerated significantly higher DIPs of 6-MP 
than did slow metabolizers [5.712 (PM, n = 1), 56.452 ± 28.2 (IM, 
n =  48)] (Figure 1A). Clinical usefulness of the conventional 
star allele-based classification was successfully demonstrated for 
NUDT15 variants in the present study. Due to the small number of 
non-NM subjects for TPMT in Korean ALL patients, the difference 
of DIPs between NM (65.702 ± 28.4, n = 237) and IM (46.805 ± 35.7, 
n = 7) did not reach statistical significance (p = 0.10, Figure 1B).

GVB scores among different molecular phenotype groups 
for NUDT15 (PM = 0.09, IM = 0.248 ± 0.1, and NM = 0.995 ± 
0.1, Figure 2A) and for TPMT (IM = 0.229 ± 0.3, NM = 1 ± 
0.0, Figure 2B) showed statistically significant differences. 
The observed positive correlation between our GVB score and 
the conventional enzymatic metabolizer phenotypes for both 

TABLE 2 | Alleles identified in 244 ALL samples with known allele functions.

Gene Number of 
identified alleles

Alleles identified in 
244 ALL samples

Frequencies 
(%)

NUDT15 6 *1 438 (89.75)
*2 6 (1.23)
*3 35 (7.17)
*4 4 (0.82)
*5 4 (0.82)
*6 1 (0.20)

TPMT 4 *1 127 (26.02)
*1S 354 (72.54)
*3C 6 (1.23)
*6 1 (0.20)

Haplotypes were inferred via PHASE 2. Star alleles were assigned by the PharmGKB 
haplotype set translational table. ALL, acute lymphoblastic leukemia.

TABLE 3 | Distribution of predicted enzymatic metabolizer phenotypes.

Molecular 
phenotype

Function NUDT15 TPMT

Poor (%) No function | No function 1 (0.41) NA
Intermediate (%) Normal | No function 48 (19.67) 6 (2.46)

Normal | Decreased NA 1 (0.41)
Normal (%) Normal | Normal 195 (79.92) 237 (97.13)

Total (%) 244 (100) 244 (100)

Molecular phenotypes were assigned using the PharmGKB haplotype set translational 
table. Star (*) allele genotype-to-phenotype correlation was adapted from information 
available at the Moriyama et al. (NUDT15) and the Clinical Pharmacogenetics 
Implementation Consortium (CPIC) guideline ( TPMT ); NA, not available.
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NUDT15 and TPMT variants strongly supported our further 
analysis. Note that those pharmacogenetic star alleles have long 
been empirically developed by clinical case–control studies and/
or animal and molecular studies. In contrast, the GVB analysis is 
based on purely theoretical ab initio and in silico methods without 

requiring empirical studies that are prohibitively costly considering 
the numerous drugs and genetic variants discovered by NGS 
technologies and the interactions. In the following sections, we 
explore the potential of the GVB scoring method for predicting 
DIPs as an indicator of 6-MP intolerance in pediatric ALL patients.

FIGURE 1 | Distribution of last-cycle dose intensity percent of 6-mercaptopurine according to star allele-based molecular phenotype groups in ALL. Dose intensity 
percent distribution across (A) Nudix Hydrolase 15 (NUDT15) and (B) Thiopurine S-Methyltransferase (TPMT) molecular phenotype groups. Normal metabolizers 
of NUDT15 showed significantly higher dose intensity percent than did intermediate ( p = 0.006) and poor ( p = 0.090) metabolizers. *p < 0.1, **p < 0.05, and 
***p < 0.01 by Mann–Whitney U test.

FIGURE 2 | Distribution of gene-wise variant burden (GVB) scores according to the star allele-based molecular phenotype groups. Gene-wise variant burden (GVB) 
scores across (A) NUDT15 and (B) TPMT molecular phenotype groups. Normal metabolizers showed significantly higher dose intensity percent than did intermediate 
(NUDT15, p = 4.17E−52; TPMT p = 5.84E−47) and poor (NUDT15, p = 1.9E−22) metabolizers. *p < 0.1, **p < 0.05, and ***p < 0.01 by Mann–Whitney U test.
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Gene-Wise Variant Burden Scores for 
Predicting Last-Cycle 6-Mercaptopurine 
Dose Intensity Percent 
Since both NUDT15 and TPMT genes are not highly variable, 
only seven and two GVB value groups for NUDT15 and TPMT, 
respectively, were identified in the 244 ALL patients. GVBNUDT15 
demonstrated statistically significant positive correlation with DIP 
(p = 0.016 by Kruskal–Wallis test, p = 0.001 (p = 0.21) by Spearman’s 
rank correlation, p = 0.001 (𝜏 = 0.17) by Kendall’s rank correlation) 
(Figure 3A). Exclusion of the two patients having both NUDT15 
and TPMT variants slightly improved statistical significance 
(Supplementary Figure S4). Due to the low frequency of TPMT 
alleles in East Asian population, 97.5% (n = 238) of all ALL patients 
were classified into wild type (GVBTPMT = 1.00 ± 0.00) and only 
six (2.50%) were classified into variant type (GVBTPMT = 0.10  ± 
0.00) groups, resulting in poor statistical significance (p = 0.408 
by T-test, p = 0.272 (ρ = 0.07) by Spearman’s rank correlation, p = 
0.271 (𝜏 = 0.06) by Kendall’s rank correlation) (Figure 3B).

Performance Comparisons Between 
Gene-Wise Variant Burden and Star Allele-
Based Molecular Phenotypes Across 
Different Risk Group Decision Thresholds 
Using ROC analysis, we evaluated the performances of GVB 
at nine cutoff levels (i.e., DIP < 5%, 10%, 15%, 25%, 35%, 45%, 
60%, 80%, and 100%) for defining the 6-MP high-risk groups. 
Star allele-based classification was also applied for systematic 
comparison across different DIP threshold levels. DIP below 
25% of planned dose of 6-MP is a generally accepted threshold 
for predicting 6-MP intolerance. Figure 4A demonstrates that 
GVBNUDT15 showed better AUCs at all threshold DIP levels below 
25% (0.998 (DIP < 5%), 0.676 (DIP < 10%), 0.669 (DIP < 15%), 

and 0.653 (DIP < 25%)) than did the conventional star allele-
based molecular phenotypes (AUC = 0.618). Moreover, exclusion 
of the two confounding patients with both NUDT15 and TPMT 
variant alleles slightly improved performances than did both 
before-exclusion GVBNUDT15 at all threshold DIP levels below 25% 
[AUC = 0.998 (DIP < 5%), 0.676 (DIP < 10%), 0.639 (DIP < 15%), 
and 0.627 (DIP < 25%)] and the star allele-based (AUC = 0.596) 
analyses (Figure 4B). Mainly due to the low frequency of TPMT 
variant alleles in East Asian population, both GVBTPMT and star 
allele-based predictions using TPMT seem to show poor AUCs 
for predicting DIP at all threshold levels (Figure 4C and D).

More importantly, we performed ROC analysis by aggregating 
the genetic effects of these two genes, NUDT15 for East Asian 
and TPMT for European heritages. We computed and evaluated 
GVBNUDT15,TPMT, which outperformed GVBNUDT15 or GVBTPMT 

alone as well as the combined molecular phenotypes of both 
NUDT15 and TPMT at all DIP threshold levels (Figure 5). In 
summary, at the clinically important DIP level of below or 
above 25%, the best AUC values for GVBNUDT15,TPMT, GVBNUDT15, 
GVBTPMT, and combined star alleles were 0.677, 0.653, 0.574, 
and 0.645, respectively. GVBNUDT15,TPMT not only showed the best 
performance but also successfully included the two confounding 
patients with both NUDT15 and TPMT variant alleles. While 
combining GVB scores of multiple genes is simple and 
straightforward, it is not the case for star alleles, which do not 
provide a uniform way of combining method for multiple genes.

Comparison of Prediction Accuracies 
Between Gene-Wise Variant Burden 
and Star Allele-Based Methods
To test the clinical utility of GVB method for guiding 6-MP dosing 
and/or for providing systematic framework for clinical studies of 

FIGURE 3 | Distribution of last-cycle dose intensity percent of 6-mercaptopurine according to gene-wise variant burden (GVB) score bins. (A) GVBNUDT15 [Kruskal–
Wallis p-value = 0.016, Spearman’s rank correlation p-value = 0.001 ( ρ = 0.21), and Kendall’s rank correlation p-value = 0.001 (𝜏 = 0.17)]. (B) GVBTPMT [Kruskal–
Wallis p-value = 0.271, Spearman’s rank correlation p-value = 0.272 ( ρ = 0.07), and Kendall’s rank correlation p-value = 0.271 (𝜏 = 0.06)].
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6-MP intolerance and its genetic determinants of NUDT15 and TPMT 
for predicting DIP groups, we evaluated the diagnostic characteristics 
of the conventional star allele-based and GVB scoring methods 
in a simulated clinical setting. Table 4A and 4B exhibits diagnostic 
accuracies for star allele-based molecular phenotype groups and gene-
wise variant burden score groups, respectively, for 6-MP intolerance 
among 244 pediatric ALL patients by the last-cycle DIP of 6-MP. Of 
the 244 ALL patients, 189 (84.4%) exhibited no NUDT15 or TPMT 

variant and hence was classified into NMs for both genes (Table 4A). 
Of the rest 55 non-NM patients, nine (16.4%) showed DIP below 25%, 
while 10 of 189 (5.3%) NM patients showed low DIP values.

Although one can choose many threshold levels of GVB, because 
star alleles can just provide a small number of categories, we chose the 
most reliable binning threshold of GVBNUDT15,TPMT ≤ 0.3, the cut-point 
that maximizes the Youden index (Supplementary Figure S5),  
for classifying the patients into the below and above 25% DIP 

FIGURE 4 | Comparison of diagnostic accuracies between star allele-based molecular phenotyping and GVB scoring for 6-mercaptopurine intolerance in ALL. Diagnostic 
accuracies are measured by using AUROC analysis for (A) GVBNUDT15 excluding two subjects with TPMT variants (DeLong’s p-value = 0.163), (B) GVBNUDT15 (DeLong’s 
p-value = 0.163), (C) GVBTPMT excluding seven subjects with NUDT15 variants (DeLong’s p-value = 0.5), and (D) GVBTPMT (DeLong’s p-value = 0.841). Numbers in the last 
parentheses indicate area under the curve (AUC) with 95% confidence intervals. DIP, dose intensity percent; AUC, area under the curve.
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groups as shown in Table 4B. It is a coincidence that Lee et al. (2016) 
also suggested GVBPharmacogenes ≤ 0.3 as the threshold for predicting 
pharmaceutical market withdrawals in general. GVBNUDT15,TPMT 
correctly classified one more high-risk (DIP ≤ 25%) and four more 
low-risk (DIP > 25%) patients into the correct-risk groups (Table 4B) 
than did the traditional haplotype-based method (Table 4A), with 
an improved sensitivity from 47.36% to 52.63% and an improved 
specificity from 79.56% to 81.33%, though the difference did not 
reach statistical significance (p-value for sensitivity = 1 and p-value 
for specificity = 0.134, as determined using a McNemar test). Both 
PPV and NPV increase from 16.36% to 19.23% and from 94.70% to 
95.31%, respectively. Overall, it is suggested that the “computational” 
GVBNUDT15,TPMT is an improved or at least comparable predictor than 
the “empirical” star allele-based haplotypes for determining subjects 
with increased risk of 6-MP intolerance in pediatric ALL patients 
measured by the last-cycle 6-MP DIP.

DISCUSSION

An enduring challenge in precision medicine is to predict adequate 
drug responses for individual patients (Shah and Shah, 2012). 
Recent discoveries have revealed a few highly functional and 
clinically relevant novel variants associated with 6-MP intolerance. 
However, since implicating drug toxicity based on a single variant 
is notoriously unreliable as shown in Supplementary Figure S1 
for SIFT and Supplementary Figure S2 for CADD, developing 
strategies to aggregate the key effects over a range of genomic 

FIGURE 5 | Comparison of diagnostic accuracies between combined (NUDT15 
and TPMT) star allele-based molecular phenotyping and GVB scoring for 
6-mercaptopurine intolerance in ALL. Diagnostic accuracies are measured by 
using AUC analysis for GVBNUDT15,TPMT (DeLong’s p-value = 0.175). Numbers 
in the last parentheses indicate AUC with 95% confidence intervals. DIP, 
dose intensity percent; AUC, area under the curve.

TABLE 4 | Comparison of star allele-based haplotyping versus gene-wise variant burden (GVBNUDT15,TPMT) analyses for 6-mercaptopurine intolerance measured by last-
cycle dose intensity percent in ALL. Diagnostic accuracy table of (A) star allele-based haplotypes and dose intensity percent groups and (B) gene-wise variant burden 
score and dose intensity percent groups.

(A)

NUDT15 and TPMT metabolizer Dose intensity percent groups Total

≤25 >25

PM + IM 9 46 55 PPV
16.36% (9/55)

NM 10 179 189 NPV 
94.70% (179/189)

Total 19 225 244

Sensitivity
47.36% (9/19)

Specificity
79.56% (179/225)

Accuracy
77.05% (188/244)

(B)

Gene-wise variant burden score Dose intensity percent groups Total

≤25 >25

GVBNUDT15,TPMT ≤ 0.3 10 42 52 PPV
19.23% (10/52)

GVBNUDT15,TPMT > 0.3 9 183 192 NPV
95.31% (183/192)

Total 19 225 224

Sensitivity
52.63% (10/19)

Specificity
81.33% (183/225)

Accuracy
79.10% (193/244)

PM, poor metabolizer; IM, intermediate metabolizer; NM, normal metabolizer; PPV, positive predictive value; NPV, negative predictive value.
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region is highly required. In the present study, we evaluated the 
utility of gene-wise deleterious variant burden scoring method, 
as a sequencing-based, simple, reliable, quantitative, and easy-to-
compare score for predicting 6-MP intolerance of 244 pediatric ALL 
patients. In addition to DIP, GVB showed a statistically significant 
negative correlation with the incidence of grade 4 neutropenia 
(p = 1.43E−04 by Kruskal–Wallis test, p = 3.89E−07 (ρ = −0.32) 
by Spearman’s rank correlation, and p = 8.06E−07 (𝜏 = −0.27) by 
Kendall’s rank correlation (Supplementary Figure S6). This implies 
that GVB is a reliable score that can predict hematological toxicity 
in pediatric ALL patients. When beginning treatment, NGS-based 
drug intolerance prediction is useful because it is practical to detect 
patients at high risk of toxicity. For example, patients with low GVB 
have a high probability of 6-MP toxicity at the initial recommended 
dose range; thus, clinicians may attempt to reduce the initial target 
dose of 6-MP. After an initial target dose is determined, a close 
therapeutic drug monitoring could help to avoid potential causes for 
toxicity, such as clinically relevant drug–drug interactions, reduced 
drug clearance due to liver and/or renal impairment, and altered 
drug utilization due to physiological conditions, as a complementary 
type of practice during the treatment (Ju-Seop Kang, 2009).

GVB analysis has several benefits over conventional star allele-
based approaches. GVB 1) quantitates gene-wise variant burden 
with a single score; 2) provides a measure of inter-individual genetic 
variability for each gene; 3) considers common, rare, and novel 
genetic variants together; 4) provides an ethnic variability-neutral 
method for studying pharmacogenomics; 5) provides a systematic 
and reliable framework for designing further pharmacogenomics 
studies considering many gene interactions for clinical endpoints; and 
6) adopts the contributing effect of novel low-frequency variants with 
potentially reduced function in predicting individual drug toxicity. 

Based upon the very recent CPIC updates on NUDT15, three 
newly enrolled alleles were characterized (Moriyama et al., 2017). 
Since new haplotype designation is highly dependent on the 
characteristics of the study population, there will be restrictions 
in incorporating new or even as-yet-unidentified evidences in 
predicting future drug intensity. GVB can be used to develop a 
model to determine optimal doses without requiring a multi-ethnic 
population study, especially for under-studied subpopulations. 

The following limitations are inherent in the present study. To 
evaluate the validity of GVB, independent replication studies for 
an expanded gene–drug set with sufficient sample sizes in diverse 
ethnic groups are required as no novel variant was identified in 
the current study. A conventional single variant-based association 
test of rare variants requires infeasible magnitude of sample sizes 
(Bansal et al., 2010), but approaches that aggregate common, rare, 
and novel variants jointly will substantially reduce a required 
effective sample sizes (Witte, 2012). The robustness of the analysis 
framework shall further be improved as novel prognostic markers 
on 6-MP DIP are acquired. The limitations in interpreting the 
score includes that all InDels are treated as highly damaging as 
SIFT provides scores for only single-nucleotide variants. As there 
are many in silico variant deleteriousness scoring method based on 
different principles, comprehensive evaluation of different method 
is required (Supplementary Figure S7). We also performed 
CADD-based computation of GVB values, resulting in similar 

results (Supplementary Figures S8 and S9). It has been reported 
that CADD tends to evaluate in-frame InDels as relatively benign 
(Kircher et al., 2014). However, recent in vitro activity assay of 
NUDT15 (Moriyama et al., 2017) proved that in-frame InDel carriers 
are more likely to be in states with severely diminished response 
to 6-MP. It is strongly recommended that for clinical applications, 
potential clinical impacts of genetic variants on drug sensitivity 
should be further examined to improve estimation accuracy, as in 
silico prediction scores can exhibit incorrect predictions. Producing 
a custom capture panel for clinically actionable genes could be 
more cost-effective than an exome-based approach.

One subject who was correctly classified by GVB carried a low-
frequency novel deletion and predicted to belong to the high-risk 
group by GVB, whereas star allele-based prediction classified this 
patient into the NM group for both NUDT15 and TPMT. The 
patient required reduced dose than recommended (DIP = 23.7%), 
supporting that GVB analysis resulted in 6-MP dose-related adverse 
drug reactions. The patient’s variant was heterozygous p.Gly17_
Val18del, which was very recently assigned as NUDT15*9 with 
uncertain functionality. The other four who were correctly classified 
by GVB had p.Arg139His on one allele, which has assigned them to 
the IM (NUDT15 *1/*4) group. GVB classified them as relatively 
safe for drug toxicity, and none of them required a 25% reduction 
from the starting dose. Additionally, one patient who was classified 
as high risk by GVB was assigned to IM for both NUDT15 and 
TPMT and required a severely reduced dose (14%), suggesting 
that GVBNUDT15,TPMT exhibits benefits in aggregating effects of many 
moderate genetic determinants into a single quantitative value.
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