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ABSTRACT
Background Semantic similarity analysis facilitates
automated semantic explanations of biological and clinical
data annotated by biomedical ontologies. Gene ontology
(GO) has become one of the most important biomedical
ontologies with a set of controlled vocabularies, providing
rich semantic annotations for genes and molecular
phenotypes for diseases. Current methods for measuring
GO semantic similarities are limited to considering only
the ancestor terms while neglecting the descendants.
One can find many GO term pairs whose ancestors are
identical but whose descendants are very different and
vice versa. Moreover, the lower parts of GO trees are full
of terms with more specific semantics.
Methods This study proposed a method of measuring
semantic similarities between GO terms using the entire
GO tree structure, including both the upper (ancestral) and
the lower (descendant) parts. Comprehensive comparison
studies were performed with well-known information
content-based and graph structure-based semantic
similarity measures with protein sequence similarities,
gene expression-profile correlations, proteineprotein
interactions, and biological pathway analyses.
Conclusion The proposed bidirectional measure of
semantic similarity outperformed other graph-based and
information content-based methods.

Semantic similarity is a concept whereby a set of
documents or terms are assigned a metric based on
the likeness of their meaning or the degree of
taxonomical proximity. The determination of the
semantic similarity between words has been
successfully applied in many biomedical areas such
as document categorization or clustering,1 2 infor-
mation retrieval,3 4 and genomic data analysis.5e7

Biomedical semantic similarity has been deter-
mined by defining a topological similarity, using
statistical means to exploit the amount of co-
occurrences between word contexts, or by using
ontologies to define the distance between words
based on the taxonomical structure.
Methods of determining semantic similarity have

recently been very extensively studied for gene
ontology (GO), which is becoming one of the most
important and rapidly growing biomedical ontol-
ogies8 with the increasing biomedical utility of
genomic data with GO annotations. GO is a set of
controlled vocabularies, describing biological
processes (BP), molecular functions (MF), and
cellular components (CC) for the annotation of
genes and molecular phenotypes for diseases.9

Semantic similarity measures between GO terms
can be classified into information content

(IC)-based5 6 10 11 and graph structure-based7 12

ones. Lord and colleagues5 6 for the first time
applied Resnik’s measure of semantic similarity13 14

to quantify GO term specificities. They evaluated
three IC-based measures and concluded that the
Resnik’s measure showed the best performance.6

However, Wang et al7 correctly pointed out that IC-
based similarity measures tended to vary from
species to species because they relied only on the
annotation frequency of GO terms to gene prod-
ucts, which were different from species to species.
They believed that the specificity of a GO term
should be determined by biological meanings, not
by their annotation statistics, and proposed a new
semantic similarity measure determined only by
the GO ontological structures.
However, the measure of semantic similarity of

Wang et al,7 given a GO term (or a pair of terms),
considers only the ancestral (or upper) terms and
neglects the lower (or descendant) ones in a GO
graph (see figure 1). The unidirectional nature of
the semantic similarity measurement of Wang et al7

has limitations. The lower portions of the GO
graphs contain more GO terms that have more
specific semantics and semantic relations. GO
annotators and curators spend more effort for this
detailed portion of the GO graphs. Moreover, many
GO term pairs sharing identical ancestors may have
very different descendants and vice versa, resulting
in severe semantic inconsistencies.
To evaluate semantic similarity measures, Lord

et al5 6 and Schlicker et al10 applied protein sequence
similarity as the ‘gold standard’. Biological path-
ways and membership of proteins in protein
complexes have also been used for evaluation. Guo
et al15 proposed a ‘positive’ dataset including the
first-degree neighbors directly connected in the
Kyoto encyclopedia of genes and genomes
(KEGG)16 biological pathway graphs and the
members of protein complexes. Random pairs of
proteins were generated as the ‘negative’ dataset.
The correlations of gene expression profiles from
DNA microarray data have also been applied to
measure the functional (or semantic) similarity of
genes and molecular phenotypes of diseases.17

In the present study, we propose a novel method
that applies a bidirectional measure of GO semantic
similarity, considering the entire GO graph structure
including both the upper (ancestral) and the lower
(descendant) parts. We first propose a descending
semantic similarity measure and demonstrate by
means of illustration and comparison studies the
necessity of designing a bidirectional measure of
carefully combining both ascending and descending
semantics. Next, we performed a comprehensive
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evaluation study comparing established IC and graph structure-
based semantic similarity measures using protein sequence simi-
larities, gene expressioneprofile correlations, proteineprotein
interactions, and biological pathway membership. Our novel
bidirectional measurement of semantic similarity of GO terms
outperformed others.

METHODS
Semantic similarity between GO terms
GO consists of three major categories: BP, MF, and CC. BP is
a series of events accomplished by one or more ordered assem-
blies of molecular functions. MF describes activity at the
molecular level. CC consists of the location of the cell, from the
levels of subcellular structures to macromolecular complexes.

In GO directed acyclic graphs (DAG), a child concept is an
instance or a component of the parent concept. As DAG allows
multiple inheritances, one concept may have multiple parent
concepts with different relations among the five: ‘is_a’;
‘part_of ’; ‘regulates’; ‘positively regulates’; and ‘negatively
regulates’. GO obeys a rule called the ‘true-path rule’. The more
specific the common ancestors of a pair of terms are, the closer
the distance between the terms is. On the other hand, as the
common ancestors of a pair of terms become general, the
distance between the terms becomes farther.

IC-based semantic measures quantify the specificity of a term.
The IC of a concept, t0, is defined as the probability of
encountering an instance of the concept t0 in the corpus,13 14 and
is given by

IC ¼ �logðpðt0ÞÞ (1)

pðAÞ ¼ freqðt0Þ
freqðrootÞ (2)

freqðt0Þ ¼ annotðt0Þ þ +
c˛childrenðt0Þ

annotðcÞ (3)

where annot(t0) is the number of occurrences of the term t0 from
the corpus. Resnik’s13 14 semantic similarity measures the

similarity of two terms using the IC of the lowest common
ancestor of the two terms and thus is defined as

SResnikðtA; tBÞ ¼ ICðLCAðtA; tBÞÞ (4)

Lord et al5 6 for the first time applied the technique from
information theory to determine semantic similarity between
genes. IC-based measures, however, tend to vary from species to
species because they rely on annotation frequency statistics, and
different species may have different annotations even for the
same genes and molecular phenotypes of diseases. Wang et al7

believed that the specificity of a GO term has to be determined
by the GO term’s semantics (or biological meanings), not by
their annotation frequencies.
Wang et al7 viewed the semantic value of a term, t0, as the

aggregate contribution of semantics from the subgraph, P(t0),
containing t0 itself and its ancestors all the way up to the root
node. For any ancestor term t of term t0, the ascending S-value of
t related to t0, AS(t0, t), is defined as

�
ASðt0; t0Þ ¼ 1

ASðt0; tÞ ¼ maxfwe$ASðt0; t’Þrt’˛CðtÞg if tst0

�
(5)

where C(t) are the children of term t, and we is the semantic
contribution factor for the edge that links term t with its child t.
Wang et al7 set semantic contribution factors for ‘is_a’ and
‘part_of ’ relations of GO hierarchy to 0.8 and 0.6, respectively.
Term t0 has the most specific semantics in P(t0) and its

contribution to its own semantics is defined as 1. Other terms in
P(t0) are more general and thus contribute less to the semantics
of t0. Therefore, the range of we is {0,1}. After obtaining the
ascending S-values for all terms in P(t0), the semantic value of
term t0, SV(t0), is calculated as

SVðt0Þ ¼ +
t˛Pðt0Þ

ASðt0; tÞ (6)

Given P(tA) and P(tB) for two GO terms, tA and tB, respectively,
the semantic similarity between them is calculated as follows:

Figure 1 Ascending and descending
measures of semantic similarities
between gene ontology (GO) terms. (A)
Although terms A and B, given the
directed acyclic graphs (DAG)
structure, must show higher similarity
than terms A9 and B9, Wang’s semantic
similarity considering only the
ascending part cannot discern the
difference (ie, SWang¼0.5575 for both).
In contrast, SDSV clearly discerns the
two pairs (ie, 0.8266 and 0.4813). (B)
Although the two terms, ‘nuclear
division’ and ‘M phase of mitotic cell
cycle’, must be semantically similar
because they share ‘mitosis’ and its
descendants (omitted), ancestor-
dependent SWang is very low
(¼0.1919). SDSV considering the
descendants, however, suggests a high
level of semantic similarity (¼0.9519).
Solid and dotted lines depict ‘is_a’ and
‘part_of’ relationships, respectively.
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SWangðtA; tBÞ ¼
+

t˛PðtAÞXPðtBÞ
ðASðtA; tÞ þ ASðtB; tÞÞ

SVðtAÞ þ SVðtBÞ (7)

where SWang refers to Wang et al’s7 measure of semantic
similarity.

Each GO term is made for the needs of biologists who describe
the real world by biological concepts. As a child term is a special
case of the parent, it is assumed that the parent term’s semantics
are the union of its children’s. GO allows for multiple inheritance,
and two semantically similar terms are likely to share their child
terms, inheriting both concepts of the two terms. Descending
semantic similarity can thus also be quantified by the shared child
terms. Figure 1A clearly shows that even if the GO term pairs have
identical ancestral topologies, their descendant topology may be
very different. Therefore, pairs having the same SWang values can
be discerned further using their descendant topologies. Of course,
pairs having the same descendant topologies can be discerned
further using their ancestral topologies. It is clear that both
ascending and descending semantics should be used together in
a balanced manner to improve the semantic similarity measures.7

We define descending S-value (DS) and descending semantic
value (DSV) as follows:

�
DSðtÞ ¼ 1 if t˛L

DSðtÞ ¼ minfwe$DSðt’Þrt’˛CðtÞg if t;L

�
(8)

DSVðt0Þ ¼ +
t˛Cðt0Þ

DSðtÞ (9)

SDSVðtA; tBÞ ¼
+

t˛CðtAÞXCðtBÞ
ð2$DSðtÞÞ

DSVðtAÞ þ DSVðtBÞ (10)

where L are terminal leaf terms. Leaf terms are the most specific
ones. Leaves are fixed such that DS takes not a relative but an
absolute value. Semantic contribution factors are set to 0.8 and
0.6 for ‘is_a’ and ‘part_of ’ relations, respectively, as in the
approach of Wang et al.7 GO recently added three more rela-
tionships (ie, regulation, positive regulation, and negative regu-
lation), and we set the semantic contribution factors for them as
0.6 for the purpose of comparison since they are ‘part_of ’ rela-
tions in the study of Wang et al.7

Wang et al’s7 AS(t0,t) represents the specificity of term t for
term t0 such that t0 and AS(t0,t) may differ for each comparison.
Computing DS(t) requires more effort than computing AS(t0,t).
Using leaf nodes instead of the term of interest (ie, t0) in our
descending S-value, DS(t), has a normalization effect; however,
a sub-tree of a term may have multiple leaf nodes. These leaves,
called ‘source’ in graph theory, exert a strong influence on the
DSV of their parent node. If we choose ‘maximum’ instead of
‘minimum’ in equation (8), DS(t0,t) becomes very unstable due
to a shallow sub-tree effect. We chose ‘minimum’ instead of
‘maximum’ to prevent this.

Our approach seems to support human intuition. SDSV says
that ‘M phase of mitotic cell cycle’ and ‘nuclear division’ are
semantically similar terms (¼0.92, figure 1B). In fact, they are
very close to ‘mitosis’ and their descendants are almost the same.
In contrast, SWang says that they are distant (¼0.19) because
they share only two ancestors, ‘cellular process’ and ‘biological
process’, which are very general terms (figure 1B).

We developed a combined measure of bidirectional semantic
similarity, SBSV, as follows:

SBSVðtA; tBÞ ¼ a$SWangðtA; tBÞ þ b$SDSVðtA; tBÞ
a þ b

(11)

where a and b are the numbers of total ancestors and total
descendants of tA or tB, respectively. SBSV complements the
limitation of SDSV that considers descending nodes only. More
importantly, SBSV tries to include ‘depth factor ’ for comparisons.
Due to the recursive dependence on common descendants, SDSV

is more likely to impact comparisons involving concepts that are
higher in the hierarchy. Notice that SWang and SDSV are not
symmetrical in that SWang is affected relatively less by the depths
of the terms in comparison. Terms eventually converge up in the
hierarchy. However, terms having logical reasons to have shared
descending semantics may not have common descendants, just
because more specific child concepts are not yet created, and
reach terminal leaves. SBSV weighs SDSV more when terms are
higher in the hierarchy but less when they are lower in the
hierarchy. The total number of descendants of two terms, b,
complements the drawback of SDSV by reducing the weight of
SDSV for terms with a small number of total descendants with
a decreased chance of having common descendants regardless of
their semantic similarity. b tries to accommodate the similarity
measure between higher and lower terms. Due to the property
of this ‘depth factor ’, SBSV is different from SWang even when
SDSV equals zero.

Similarity between genes and molecular phenotypes
Gene products are annotated by GO terms. Therefore, semantic
similarity between gene products can be regarded as semantic
similarity of the GO term sets. Wang et al7 defined set-wise
similarity as:

Sðt;GÞ ¼ max
1#i#k

ðSðt; tiÞÞ (12)

SðG1;G2Þ ¼
+

1#i#m
Sððt1i;G2Þ þ +

1#j#n
S
�
t2j;G1

�

m þ n
(13)

where G is a set of GO terms and k is the number of terms in G.
G1 and G2 consist of m and n terms, respectively.7 Term-wise
similarities can be replaced by SResnik, SWang, SDSV, SBSV, etc. The
similarities of the most similar pair of terms from each anno-
tation are averaged over to calculate set-wise similarity. We used
BP annotations only for the following evaluation steps.

Validation
We performed a comprehensive validation study comparing IC
and graph structure-based semantic similarity measures
including our newly proposed ones. For the purpose of illustra-
tion, we explored the whole GO hierarchy to find the terms
showing the biggest discrepancies between the ascending and
descending measures. Second, we performed extended replica-
tion of the evaluation study of Lord et al5 6 that did not include
graph-based measures. We applied protein sequence similarity as
the ‘gold standard’ to compare GO annotation-based semantic
similarities calculated by different measures.
Semantic similarity measures are more valuable for investi-

gating functional states such as gene-expression clusters and
biological pathway memberships than structures such as protein
sequences. To assess the resolution power of the similarity
measures, we applied F-statistic comparing for ‘between-group’
and ‘within-group’ similarities. For a comprehensive evaluation
study, we downloaded three datasets from the gene expression
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omnibus:18 GSE412: treatment-specific changes in gene expres-
sion discriminate in-vivo drug response in human leukemia cells;
GDS1244: phosgene effect on lungs: time course; and GDS2159:
spinal cord injury model: time course. We calculated the corre-
lation coefficients of gene expression profiles for all gene pairs for
each dataset. All pairs were sorted according to their correlation
coefficients. Figure 2 shows our evaluation scheme. The within-
group difference is controlled by s applied equally to the three
comparison groups on the horizontal axis of the correlation
coefficient. The larger the window size, s, the larger the within-
group difference. The difference between the three comparison
groups is controlled by the ‘between-group’ distance, d. We
randomly sampled 1000 pairs for each window using 3 s
(¼0.025, 0.05, 0.1) and 3 d (¼0.05, 0.1, 0.2). We repeated
the comparison tests for each of the nine sed pairs for each
dataset by sliding the window from the leftmost (R¼0) to the
rightmost (R¼1) levels of the correlation coefficient values
shown in figure 2B.

Using receiver operating characteristic curve analysis, we
quantitatively evaluated the semantic similarity measures using
human proteineprotein interaction and biological pathway
datasets. The first positive dataset was assembled from the
UniProt database from which we gathered all human proteins
and their interaction data. After filtering out proteins without
interactions, we found 10 348 protein pairs with GO BP anno-
tations. The negative set was created by randomly sampling the
same number of protein pairs.

The second dataset comes from BioCarta.19 We extracted
41 697 protein pairs from the 343 BioCarta pathways with the
same number of negative pairs. The third one comes from
KEGG16 with 8839 protein pairs from the selected seven KEGG
categories (carbohydrate metabolism, energy metabolism, lipid
metabolism, nucleotide metabolism, amino acid metabolism,
glycan biosynthesis and metabolism, and metabolism of cofac-
tors and vitamins). Compared with the broader categories of the
BioCarta pathways, we used only the metabolism-related cate-
gories for KEGG to create a much harder discrimination
problem. The negative datasets were created within the
comparison categories using the same procedure.

RESULTS
The list of extreme GO term pairs that look very distant by an
ascending (or a descending) measure but very close by
a descending (or an ascending) measure is exemplified in table 1A
(or table 1B). Their ascending and descending similarities were
most discrepant among all GO pairs. It is clear that semantic
similarity measures depending only on ancestral or only on

descendant terms have limitations. All pairs in table 1 are similar
in a sense because they are similar in at least one of the
measures.
Histamine secretion (GO:0001821) and histamine production

involved in acute inflammatory response (GO:0002349), for
instance, are very different in terms of ascending semantic
similarity (SWang¼0.062) but very similar in terms of descending
measure (SDSV¼0.872). Bidirectional measures assigned
a reasonably high value (SDSV¼0.273). Those that have low
ascending but high descending semantic similarities in table 1A
were those that diverged up in the GO tree and then converged
thereafter. Some terms diverged because different biological
contexts are required to describe their contextual difference, but
then eventually converged because they have the same or at
least very close concepts.
As SDSV considers descendant nodes only, the descending

semantic similarity of any terminal leaf node pair, even if they
are siblings, vanishes. The pairs in table 1B whose ascending
similarities are very high (SWang>0.9) with vanished descending
similarities (SDSV¼0) were mostly ‘sibling’ leaf nodes like
pointed-end (GO:0010034) and barbed-end (GO:0051016) actin
filament capping. As they are siblings deep in the tree, their
ascending similarities are very high, but their descending simi-
larities are zeros because they have no children. As a GO tree has
so many leaf nodes, approximately two-thirds of all pair-wise
SDSV values are zeros. On the contrary, the average SWang for all
pairwise calculations is approximately 1.0. The SBSV values, on
the contrary, assign reasonably high but still discernible
semantic similarities to both categories.

Protein sequence similarity-based evaluation
Lord and colleagues5 6 used protein sequence similarities
measured by the BLAST algorithm as the ‘gold standard’ for
evaluating IC-based semantic similarity measures. We replicated
the same procedure for a fair comparison with an extension to
graph-based ones. First, we downloaded SWISS-PROT protein
sequences with available GO BP annotations. The number of
sequences has approximately doubled to 13 933 compared with
the study of Lord et al.5 6 We excluded sequences with no BP
annotation, returning 12 376 protein sequences. Next, we
performed a BLAST search to find the best matching protein
pairs and their bit scores.
Table 2 shows the correlation coefficients between ln(bit score)

and the semantic similarities in the comparison. Resnik’s measure
showed the best performance among the IC-based ones, which is
consistent with the findings of the study of Lord et al.5 6 Lord
et al5 6 did not have a chance to compare graph-based measures at

Figure 2 Evaluation schemes for
semantic similarity measures. (A) All
gene pairs are sorted by expression-
profile correlation coefficients, R.
Several sliding window sizes (ie,
s¼0.025, 0.05, 0.1), and distances (ie,
d¼0.05, 0.1, 0.2) are applied for
a vigorous and systematic evaluation.
(B) While sliding the windows from R
equals 0 to 1, F-values for all
comparison are calculated to test the
statistical significance of the
discriminating powers of different
semantic similarities.
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that time. Table 2 demonstrates that graph-based measures
including SWang, SDSVand SBSVoutperform the IC-based measures
of Resnik,13 14 Lin20 and Jiang and Conrath.21 Our combined
measure, SBSV, showed the highest correlation coefficient but the
differences are too small to achieve statistical significance among
the graph-based ones. We concluded that our descending and
bidirectional measures are at least as good as the classic ascending
measures in terms of protein sequence similarity prediction.

Gene expression-profile similarity-based evaluation
Figure 3 shows the results of the evaluation study based on gene
expression-profile similarity. The bidirectional measure, SBSV
(black lines), seems to take advantage of both ascending and
descending measures in that SBSV follows SWang when it
performs well and SDSV when it performs well (figure 3AeC).
Although SResnik is a well-known and highly performing
semantic similarity measure, it had poorer F-values (in the
vertical axis) than that of most graph-based measures in our
evaluation study. Consistent with the study of Wang et al,7

ontology structure-based SWang had a better resolution power
than IC-based SResnik.

Although SResnik showed low performance in general, SResnik
got better when s and d were very big, as shown in the upper
right corners (s¼0.1, d¼0.2) in figure 3A,B). In contrast to the
right upper corners representing easier discrimination problems,
the left lower corners (s¼0.025, d¼0.05) represent harder ones.
The descending measure, SDSV, showed very high performance in
the left lower corners, representing better discerning power for
gene expression profiles with higher similarities. SDSV outper-
formed SWang and the others except for the large s and large
d regions. It seems that the bidirectional SBSV measure
compensates for the unidirectional descending SDSV and
ascending SWang measures for their areas of weaknesses.

Biological knowledge-based evaluation
Figure 4 shows that semantic similarity measures can be used to
predict proteineprotein interactions and biological pathway
memberships with reasonably high performance. As the KEGG
metabolic pathway constitutes a harder problem than BioCarta,

the receiver operating characteristic curves for KEGG (figure 4C)
showed poorer performances than those for BioCarta (B) for all
four of the measures. Once again, we see that the descending
SDSV measure outperformed the ascending SWang measure for
those harder discrimination tasks and the bidirectional SBSVused
the advantages of both. All graph-based measures outperformed
the IC-based SResnik. Other IC-based methods were omitted from
the graph due to lower performances than that of SResnik.
Figure 4A shows that the descending SDSV measure may have

a point where the discriminating power is saturated. The
UniProt database is well annotated and rich in very specific GO
terms. The SDSV of more than one-third of the protein pairs
(n¼3515) was thus zero. It is a nice demonstration of the limi-
tation of SDSV. The descending SDSV measure is poor in distin-
guishing the semantic distances of leaf-to-leaf pairs or of pairs
near the terminal leaves having few descendants. Nevertheless,
SDSV shows very good performance before the saturation point,
and our bidirectional measure, SBSV, shows the best performance
among these, using the advantages of both the ascending SWang

and descending SDSV measures. Please note that SBSV is not equal
to SWang even when SDSV equals zero due to the ‘depth factor ’
(see the Methods section). The measure of Resnik13 14 shows
relatively high performance for this proteineprotein interaction
dataset (figure 4A) compared with the others (figure 4B,C). It
seems that the high specificity annotations of the UniProt
database complements SResnik’s low resolution problem,
returning a high level of discriminatory performance.

Impact of introducing bidirectional semantic similarity measure
Because approximately a third of GO BP terms are leaves, it is
important to have an approximate idea of what proportion of
the comparisons will yield a different value with the new
measure. SBSV is not merely a weighted summation of SWang and
SDSV but applies a ‘depth factor ’ such that SBSV does not
become SWang even if SDSV equals zero (see the Methods
section). Moreover, entities such as genes, gene clusters, and
biological pathways are annotated with more than one GO
term. Figure 5 shows the proportions of changes, (SWangeSBSV)/
SWang, introduced by applying bidirectional measures, SBSV,
between gene pairs. The dotted line depicts the frequency
distribution of the proportion of semantic similarity changes of
9088 among the 12 376 best matched protein pairs by BLAST
for the protein sequence similarity evaluation-based study.
Only 229 pairs showed no change (or (SWangeSBSV)/SWang¼0).
We removed the 3288 (¼12 376e9088) pairs having perfectly
identical GO annotations because their semantic similarities
cannot be changed from 1.0 by any measure. The average of the
proportions of changes was 0.290.

Table 1 GO term pairs showing the biggest differences between ascending SWang, descending SDSV, and bidirectional SBSV measures of semantic
similarities

Term 1 Term 2 SWang SDSV SBSV

(A) Response to acetate (GO:0010034) Initiation of acetate catabolic process (GO:0043077) 0.039 0.876 0.164

Elevation of cytosolic calcium ion concentration
(GO:0007204)

Cytosolic calcium ion transport (GO:0060401) 0.028 0.849 0.358

Neuron projection regeneration (GO:0031102) Response to axon injury (GO:0048678) 0.088 0.903 0.647

Histamine secretion (GO:0001821) Histamine production involved in acute inflammatory
response (GO:0002349)

0.062 0.872 0.273

(B) Pointed-end actin filament capping (GO:0051694) Barbed-end actin filament capping (GO:0051016) 0.960 0.000 0.936

Suppression by virus of host extracellular antiviral
response (GO:0019053)

Suppression by virus of host intracellular antiviral
response (GO:0019052)

0.956 0.000 0.852

Replication fork protection (GO:0048478) Replication fork arrest (GO:0043111) 0.951 0.000 0.858

Pointed-end actin filament uncapping (GO:0051696) Barbed-end actin filament uncapping (GO:0051638) 0.949 0.000 0.919

GO, gene ontology.

Table 2 Correlation coefficients between protein sequence similarity
measured by BLAST bit score and various semantic similarities

IC-based Graph-based

SResnik SLin SJiangConrath SWang SDSV SBSV

Correlation coefficient 0.220 0.170 0.192 0.353 0.356 0.357

IC, information content.
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We downloaded 7804 human genes having at least one GO
annotation from the GO annotation database and randomly
sampled 9000 pairs. We discarded gene pairs having perfectly
identical GO annotations during the sampling procedure because
their semantic similarities can be changed by no measure. The
solid line depicts the frequency distribution of the proportion of
changes. Only two pairs showed no change. The average of the
proportions of changes was 0.623. Best-matched protein pairs

showed smaller changes (dotted line) than randomly sampled
gene pairs from the GO annotation database (solid line) because
sequence-matched proteins are semantically more similar. Some
pairs, however, showed big change even though they are the
best-matched pairs by BLAST.
Introducing a descending measure for computing semantic

similarity can be justified by the existence of multiple inheri-
tances. We found that 11 763 (68.3%) among 17 217 GO BP

Figure 3 Evaluation of semantic measures using microarray gene expression-profile similarities for (A) GSE412, (B) GDS1244, and (C) GDS2159
datasets downloaded from the gene expression omnibus. Correlation coefficients between gene expression profiles were calculated for all gene pairs.
F-test was applied for testing the discriminant power of the semantic measures by varying window sizes (s¼0.025; 0.5; 0.1) and window distances
(d¼0.05; 0.1; 0.2) across different levels of correlation coefficients by sliding the windows (see figure 2 for the evaluation scheme). Inner horizontal
and vertical axes represent correlation coefficient and F-statistic, respectively. Outer horizontal and vertical axes represent window distance d and
window size s, respectively.
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terms have more than one parent. It was 50.3% (¼14 646/
29 139) in all GO terms. The average number of parents of
a term was approximately 2.03. In medical subject heading
(MeSH) hierarchy, we found that 36 817 (73.9%) among 49 836
terms have more than one parents. MeSH showed more
multiple inheritances, with 2.94 parents per a term.

DISCUSSION
SDSV and SBSV extend and improve the ascending semantic
similarity of Wang et al.7 We applied our method for measuring
the semantic similarity of genes and molecular phenotypes of
diseases using ontological relations of GO terms. We performed
comprehensive evaluation studies and theoretical analysis. While

the scope of the present study has been limited to GO term
similarities, the improved measure of semantic similarity can be
applied as is to other biomedical ontologies such as ICD, MeSH,
SNOMED-CT, etc.22 23 As Jensen and Bork8 pointed out, GO has
become the dominating biomedical ontology over a period of
just 5 years at least in terms of how often they are mentioned in
PubMed abstracts. Almost all biomedical ontologies are either
simple tree structures that represent hierarchical classifications
or DAG. The difference is that the latter allows a term to be
related to multiple broader terms, whereas the former does not.
Moreover, some of the GO terms are middle phenotypes
between the cellular and molecular function levels and the
disease levels, explaining pathophysiology.

Figure 3 Continued
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Although SWang is a well-known highly performing measure,
it suffers from limitations. First, when two terms in compar-
ison are near the root, they have few common terms and the
similarity measure becomes unstable. This is a symmetrical
problem to the ‘leaf-to-leaf pair ’ problem of descending
SDSV measure that is well demonstrated in table 1B and
figure 4A. Cell communication (GO:0007154) and cell death
(GO:0008219), for example, are children of cellular process
(GO:0009987), which is a child of the GO BP root term such
that their ascending semantic similarity is relatively high (ie,
SWang¼0.507). Cell death has one more path to the root via its
parent death (GO:0016265), which is a child of the GO BP root
term. Although they are very high in the hierarchy they have

very few shared descendants such that SDSV¼0.003 and
SBSV¼0.004.
Second, when two terms are descendants of distant parents

but soon converge, the ascending SWang measure regards them as
distant pairs by neglecting their many shared descendants (see
table 1A). This ‘diverge-then-converge’ pairs are inevitable given
the DAG structure and there are many such pairs in the GO
DAG structure. As described in the Results section, 68.3% of GO
BP, 50.3% of all GO, and 73.9% of MeSH terms have more than
one parent.
The descending S-value is designed in a very different way

than the ascending S-value. Wang et al7 defined the ascending
S-value (or AS) of a term, t, as a contribution of t to t0. Term t0

Figure 3 Continued
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has the most specific semantics in P(t0) and its contribution to
its own semantics is defined as 1. The ascending S-value of
a term, t, thus varies according to t0 such that computing the
ascending semantic value requires two variables, AS(t0, t). While
the ascending S-value of a term, t, is a relative value, the
descending S-value (DS) of a term, t, is an absolute one because
terminal leaves always have the most specific semantics of 1 in
C(t0). Computing DS requires only one variable, DS(t), and the
minimum value will be chosen among the many paths. Both
semantic values can be obtained by summating ascending and
descending S-values of all members of the subgraphs, P(t0) and C
(t0), respectively. One can pre-compute DS(t) for all GO terms
because DS has absolute value.

The descending measure, SDSV, is designed to impact
comparisons involving concepts that have large numbers of
descendants. SBSV complements the limitation of SDSV that
considers descending nodes only. Comparisons may involve
higher and lower terms together. The total number of descen-

dants of two terms, b, or the ‘depth factor ’ works as a reason-
able compensator. Wang et al7 demonstrated that graph-based
measure shows better resolution power for harder problems. The
present study demonstrated that SDSV improves the resolving
power by utilizing more specific terms down the hierarchy and
SBSV complements its drawback. Figure 4B,C demonstrates that
SDSV improves performance for harder problems. Figure 3
demonstrates that SDSV shows very high performance in the left
lower corners (s¼0.025, d¼0.05), representing better discerning
power for gene expression profiles with higher similarities.
Moreover, SBSV is not merely a weighted summation of SWang

and SDSV. While SDSV applies the commonality (or conjunction)
of descendants, its weight, b, applies the union of descendants.
SBSV does not become SWang even when SDSV equals zero.
GO hierarchy has a large proportion of terminal leaves on

which SDSV has only limited impact. However, more useful real-
world tasks involve genes, pathways, disease,24 and medical
concepts,22 having rich GO annotations rather than terms

Figure 4 Receiver operating characteristic curve analyses to evaluate semantic similarity measures. The positive datasets were extracted from (A)
UniProt proteineprotein interaction data, (B) Biocarta, and (C) KEGG biological pathways. Negative sets were created by random sampling from the
corresponding datasets. Other information content-based measures are omitted because of their poorer performances compared to Resnik’s measure.
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themselves. Figure 5 demonstrates the magnitude of the impact
of introducing descending similarity measure to gene pair
semantic comparison studies.

Intentional definition (or coactive definition) works from
more general to more specific, which is informally called a ‘top-
down’ approach. Extensional definition (or denotative defini-
tion) works the other way (ie, ‘bottom-up’), moving from
specific observations to broader generalizations. Current
methods of determining semantic similarities are limited in that
they are applying ‘top-down’ approaches only. We propose
a novel method that applies bidirectional measures of semantic
similarity, considering the entire DAG structure including both
the upper (ancestral) and the lower (descendant) parts.
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