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interpret the vast number of genetic variants remains lim-
ited, presenting a significant challenge in effectively utiliz-
ing this data (Marian 2020).

Nonsynonymous single nucleotide variants (nsSNVs), 
which directly affect amino acid substitution, account for 
more than half of the 20,000 SNVs in the human exome (Lin 
et al. 2023; Shihab et al. 2014). These nsSNVs can lead to 
severe diseases by significantly altering protein structure or 
function. Therefore, distinguishing pathogenic from benign 
variants is critical for advancing personalized medicine. 
And approximately 85% of these nsSNVs have alternative 
allele frequencies (AFs) below 0.5%, with roughly 100–400 
rare variants identified per sequenced individual (Genomes 
Project et al. 2012; Tennessen et al. 2012).

Experimental validation of these nsSNVs is impractical 
for large-scale studies because it is costly and time-consum-
ing (Livesey and Marsh 2022). To overcome these limita-
tions, numerous computational tools have been developed to 
predict the potential impact of nsSNVs. These tools utilize a 
variety of variant properties, including sequence homology 
(Reva et al. 2011), evolutionary conservation (Cooper et al. 
2010), allele frequency (AF) (Alirezaie et al. 2018), phys-
iochemical and biochemical properties of amino acids (Lu 

Introduction

Comprehensive assessment of genetic variation using 
exome or genome sequencing to identify disease-causing 
variants is becoming increasingly routine in clinical genet-
ics. Among these variants, single nucleotide variants (SNVs) 
are the most prevalent, accounting for approximately 0.1% 
of the human genome and translating to approximately 
3.5  million per individual (Lin et al. 2023). These SNVs 
play a crucial role in the genetic diversity of human popula-
tions by influencing traits such as disease susceptibility and 
drug response (Sun and Yu 2019). However, the ability to 
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Abstract
Reliable prediction of pathogenic variants plays a crucial role in personalized medicine, which aims to provide accurate 
diagnosis and individualized treatment using genomic medicine. This study introduces PRP, a pathogenic risk prediction 
for rare nonsynonymous single nucleotide variants (nsSNVs), including missense, start_lost, stop_gained, and stop_lost 
variants. PRP was designed to provide robust performance and interpretable predictions using thirty-four features across 
four categories: frequency, conservation score, substitution metrics, and gene intolerance. Five machine-learning (ML) 
algorithms were compared to select the optimal model. Hyperparameter optimization was conducted using Optuna, and 
feature importance was analyzed using Shapley Additive exPlanations (SHAP). PRP used ClinVar data for training and 
evaluated performance using three independent test datasets and compared it with that of twenty other prediction tools. 
PRP consistently outperformed state-of-the-art tools across all eight performance metrics: AUC, AUPRC, Accuracy, 
F1-score, MCC, Precision, Recall, and Specificity. In addition to achieving high sensitivity and high specificity without 
overestimating the number of pathogenic variants, PRP demonstrates robustness in predicting rare variants. The datasets 
and codes used for training and testing PRP, along with pre-computed scores, are available at ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​D​​N​A​v​​i​
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et al. 2015), protein structure(), and various other prediction 
scores (Rentzsch et al. 2019). A wide range of algorithms 
have been employed in these tools, from traditional machine 
learning algorithms such as random forest (RF) (Carter et 
al. 2013), support vector machine (SVM) (Lu et al. 2015), 
and logistic regression (LR) (Lu et al. 2015), to the latest 
advancements in deep learning, including deep neural net-
works (DNN) (Quang et al. 2015), recurrent neural networks 
(RNN) (Li et al. 2022), and deep residual neural networks 
(ResNet) (Qi et al. 2021).

However, these tools have several limitations. Most pre-
diction tools tend to overestimate the number of pathogenic 
variants, resulting in high sensitivity, low specificity, and 
conflicting results (Bu et al. 2022; Gunning et al. 2021; 
Ioannidis et al. 2016; Li et al. 2014; Zeng et al. 2024). More-
over, they primarily focus on missense variants, neglecting 
other variant types in coding regions, such as start_lost, 
stop_gained, and stop_lost. Additionally, many ensemble-
based tools rely on multiple other prediction scores as fea-
tures to boost performance, which can lead to issues when 
those scores are missing, leaving many variants unclassified 
(Dong et al. 2015; Li et al. 2014, 2018). Furthermore, their 
predictive performance for rare benign variants is notably 
poorer compared to that for common variants (Ioannidis et 
al. 2016).

To address these limitations, this study introduces PRP, 
a novel Pathogenic Risk Prediction method for rare nsS-
NVs, designed to provide robust performance and inter-
pretable predictions utilizing new features and advanced 
algorithms, without relying on other prediction scores. PRP 
integrated features from four categories such as frequency, 
conservation score, substitution metrics, and gene intoler-
ance. Neighbor Preference Frequency (NPF) was used as a 

feature, leveraging the fact that amino acids have different 
preferences for neighbors. This indicates that amino acids 
with similar neighbor preferences tend to replace each other 
more frequently than those with different neighbor prefer-
ences (Xia and Xie 2002). It was also examined whether 
human-specific substitution metrics are valuable as a feature 
in the prediction of pathogenic variants. Considering that 
the distribution of variants is not random across the genome 
and that some regions exhibit strong selection against them 
(Karczewski et al. 2020), features at the codon, domain, and 
gene levels were used.

To develop a superior model, three tree-based gradient-
boosting algorithms and two deep-learning-based algorithms 
were applied and compared. Hyperparameter optimization 
was performed using Optuna (Akiba et al. 2019), and Shap-
ley Additive exPlanations (SHAP) (Lundberg 2017) were 
applied to investigate the feature influence.

PRP provides more accurate performance and interpre-
table models for pathogenic variants than other prediction 
tools, thereby facilitating the identification of pathogenic 
variants and enhancing the utility of sequencing data in 
clinical genomics.

Materials and methods

The methodology is summarized in Fig. 1. Dataset prepa-
ration, which included filtering, preprocessing, and annota-
tion, was performed using an in-house customized pipeline 
written in Perl on Linux. The model development and eval-
uation were conducted using Python on the Google Colab 
platform. Canonical transcripts were used to annotate vari-
ants under the GRCh38 reference assembly.

Fig. 1  The flowchart of the PRP. Data preparation and model development and evaluation
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Training dataset

The training dataset was sourced from the ClinVar (Lan-
drum et al. 2018) database (clinvar_20230826.vcf.gz), 
which comprises clinically observed genetic variants. 
ClinVar includes a wide range of variant types located not 
only in coding regions but also in non-coding regions, with 
well-curated classifications distinguishing pathogenic from 
benign variants. The variants were filtered based on the fol-
lowing criteria. First, nsSNVs, including missense, start_
lost, stop_gained, and stop_lost variants in coding regions, 
were selected. Second, nsSNVs with the clinical signifi-
cance classified as pathogenic, likely pathogenic, or patho-
genic/likely pathogenic were labeled as true positives (TPs), 
while those classified as benign, likely benign, or benign/
likely benign were labeled as true negatives (TNs). Third, to 
reduce false positives in the curated data, nsSNVs with the 
review status of practice guidelines, reviewed by an expert 
panel, or criteria provided multiple submitters, no conflicts 
were retained. After filtering, 47,883 nsSNVs remained, 
consisting of 26,383 TPs and 21,500 TNs. To improve the 
classification of rare variants, 3,000 rare TNs were ran-
domly selected and added. These variants were chosen 
based on the same criteria up to the second one described 
above, with the review status of criteria provided by a single 
submitter and an AF of less than 3e-4. The AF of 3e-4 cor-
responds to the first quartile of AFs among the 21,500 TNs. 
Since the number of TNs with AFs below this value was 
substantially lower than that of TPs, 3,000 additional TN 
variants were selected to balance the two classes within this 
low-AF range. Ultimately, the training dataset comprised 
50,883 nsSNVs, including 26,383 TPs and 24,500 TNs, 
originating from 4,596 genes. The variant types included in 
the training dataset consisted of 37,803 (74.29%) missense, 
335 (0.66%) start_lost, 12,720 (25%) stop_gained, and 25 
(0.05%) stop_lost variants (Table S1), and the dataset was 
used for model development.

Test dataset

Three distinct test datasets were compiled to assess the per-
formance and generalizability of the model. To avoid Type 
1 circularity, where the model may overestimate its perfor-
mance by using the same or highly similar data for both 
training and evaluation, variants in the test datasets that 
overlapped with the training dataset were excluded (Grimm 
et al. 2015). In addition, overlapping variants among the 
three test datasets were removed to ensure independence 
between datasets. Variants with conflicting clinical inter-
pretations across datasets were also excluded to maintain 
consistency and reduce potential bias. Furthermore, to 
avoid potential overlap with the training datasets of other 

prediction tools, which were published by 2022 and con-
structed using data available before that year, variants that 
were newly registered in 2022 or later were selected as the 
test dataset.

Test Dataset 1 was obtained from the latest ClinVar data 
(clinvar_20231230.vcf.gz). by applying the same filtering 
criteria used for the training dataset, and nsSNVs overlap-
ping with the training dataset were removed. This resulted 
in 4,920 nsSNVs, including 2,841 TPs and 2,079 TNs from 
1,813 genes, being used. Test Dataset 2 was sourced from 
Humsavar (release 2022_05) in UniProt (Mottaz et al. 2010; 
The UniProt 2017), which consists solely of missense vari-
ants curated from the literature. Variants classified as LP/P 
(likely pathogenic or pathogenic) were retained as TPs, 
while those classified as LB/B (likely benign or benign) 
were retained as TNs. Variants overlapping with the training 
dataset and Test Dataset 1 were removed, and those regis-
tered before 2022 were excluded, yielding 13,127 nsSNVs, 
comprising 6,840 TPs and 6,287 TNs from 4,986 genes. 
Test Dataset 3 was obtained from the Clinical Genome 
Resource (ClinGen) (Rehm et al. 2015), which provides 
a centralized database for the evidence-based classifica-
tion of variants, supporting precision medicine and clinical 
decision-making. ClinGen includes various variant types 
located in coding regions, with well-curated classifications 
distinguishing pathogenic from benign variants. First, nsS-
NVs were selected. Second, nsSNVs with the assertion cat-
egorized as pathogenic or likely pathogenic were retained 
as TPs, while those categorized as benign or likely benign 
were retained as TNs. Third, to ensure the independence of 
this dataset, nsSNVs that overlapped with the training data-
set and other test datasets were removed, and only nsSNVs 
with the approval date after 2022 were included. This data-
set consisted of 282 nsSNVs, comprising 239 TPs and 43 
TNs from 37 genes. The number and proportion of variant 
types for each test dataset were listed in Table S1.

Dataset annotation

Thirty-four features from four categories were used to pre-
dict pathogenic variants, as listed in Supplementary Table 
S2.

First, frequencies related to allele frequency (AF), codon 
usage frequency (CF) of the codon containing the variant, 
and neighbor preference frequency (NPF) of amino acids 
adjacent to the variant were employed. AFs were obtained 
from gnomAD (Karczewski et al. 2020), covering all the 
exomes in versions 2 and 4. CF, which represents codon 
usage frequency in humans, was obtained from the Codon 
Statistics Database (Subramanian et al. 2022), which pro-
vides codon usage statistics for all species with reference 
or representative genomes in RefSeq. NPF was calculated 
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ExAC database (Lek et al. 2016) and obtained from Tair et 
al (Shauli et al. 2021).

Lastly, gene intolerance scores, including pLI (probabil-
ity of being loss-of-function intolerant), pRec (probability 
of being recessive), and pNull, were obtained using gno-
mAD v4. pLI, pNull, and pRec are scores related to gene 
constraints that measure the intolerance of a gene to loss-of-
function (LoF) mutations.

Spearman rank correlation coefficients were calculated to 
assess the relationships between the features. To enhance 
model performance and ensure stability, the features were 
normalized, and missing values were imputed. A summary 
of the features and their corresponding missing values is 
provided in Table S2.

Model development and interpretability

Five ML algorithms were applied and compared for mod-
eling: tree-based gradient boosting algorithms XGBoost 
(eXtreme Gradient Boosting) (Chen and Guestrin 2016), 
LightGBM (Light Gradient Boosting Machine)(Ke et al. 
2017), CatBoost (Prokhorenkova et al. 2018), as well as the 
deep learning based TabNet (Arik and Pfister 2021), and 
DNN (Deep Neural Network) (Montavon et al. 2018).

To fine-tune the models with more generalizability and 
prevent overfitting, the hyperparameter values of each 
algorithm were optimized using ten-fold cross-validation 
(CV) over the training dataset. Hyperparameter optimiza-
tion was conducted using the Bayesian optimization library, 
called Optuna (Akiba et al. 2019). This is a framework cre-
ated to automate and accelerate hyperparameter optimiza-
tion experiments and continually calls for and assesses the 
objective function for various parameter values to arrive 
at the best. In this study, a Tree-Structured Parzen Estima-
tor Sampler (TPESampler) was used to explore the hyper-
parameter space efficiently. This approach often enables 
faster identification of optimal hyperparameters compared 
to grid search, which systematically evaluates all combina-
tions within a predefined grid. Moreover, Optuna supports 
flexible and complex search spaces, including conditional 
hyperparameter spaces where the configuration of one 
hyperparameter depends on the value of another. For each 
ML algorithm, 100 Bayesian optimization trials were per-
formed to determine the hyperparameters that maximize the 
AUC. Additionally, the optimization process was enhanced 
by integrating the Median Pruner to eliminate unpromising 
trials. The specific details for each ML algorithm, includ-
ing parameter settings and search space ranges, are listed 
in Table S3.

To interpret the feature importance of the model, the 
SHAP (Shapley additive explanations) framework was 
applied to the models. SHAP provides a model-agnostic 

using a human protein reference sequence from NCBI, 
applying the formula below (Xia and Xie 2002):

f (Aijk) =
∑ 20

i=1
∑ 20

k=1n (Aijk)
n (Aj)

where n (Aj) is the number of amino acids j in the protein 
reference sequence and n (Aijk)  is the number when the 
center amino acid is j, the forward amino acid is i and the 
backward amino acid is k. And Aijk is amino acid trip-
lets. Amino acids have distinct neighbor preferences, which 
influence their placement in different secondary structures. 
It is known that amino acids with similar neighbor prefer-
ences tend to substitute for one another more frequently 
than those with different preferences (Xia and Xie 2002). A 
higher NFP indicates similar neighbor preferences, while a 
lower NFP suggests differing preferences.

Second, conservation scores, including PhyloP (100way, 
470way) (Pollard et al. 2010), PhastCons (100way, 470way) 
(Siepel et al. 2005), and multiz100way (exonNuc, exo-
nAA), were obtained from UCSC (Kent et al. 2002). These 
scores were calculated based on the multiple sequence 
alignments of various species. PhyloP and PhastCons were 
utilized not only at the allele level but also at the codon, 
domain, and gene levels, where scores were averaged across 
these regions. The positions of the domains were obtained 
using the InterPro (Blum et al. 2021) API, and the gene 
structure was acquired from GenBank’s GFF file (Benson 
et al. 2013). The nucleotide and amino acid frequencies of 
the multiz100way were calculated using the formula below 
(Capriotti and Fariselli 2022):

f (xi) = n (xi)∑ i=k
i=1n (xi)

where n (xi) is the number of the nucleotide or amino acid 
xi in the sequence alignment and k is equal to 5 (includ-
ing the generic nucleotide N) and 20 for DNA and protein 
sequences, respectively.

Third, substitution metrics included BLOSUM62 
(Henikoff and Henikoff 1992), PAM250 (Dayhoff et al. 
1978), and Grantham (Grantham 1974), as well as codon 
substitution (codonST) and amino acid substitution (aaST) 
(Shauli et al. 2021). BLOSUM62, PAM250, and Grantham 
are cross-species substitution metrics used to score the 
alignments between protein sequences. BLOSUM62 
and PAM250 primarily focus on evolutionary distances, 
whereas Grantham assessed physiochemical differences 
based on the volume, polarity, and chemical properties of 
the side chains between amino acids. codonST and aaST 
are human-specific substitution metrics calculated using the 
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precision, sensitivity, specificity, F1-score, Matthews corre-
lation coefficient (MCC), area under the receiver operating 
characteristic curve (AUC), and area under the precision-
recall curve (AUPRC). MCC represents the correlation 
coefficient between the observed and predicted classifica-
tions (Vihinen 2012), and can be measured using the fol-
lowing equation:

Accuracy = TP + TN
TP + TN + FP + FN

Precision = TP
TP + FP

Recall (= Sensitivity) = TP
TP + FN

Specificity = TN
TN + FP

F1 score = 2 × Precision × Sensitivity
Precision + Sensitivity

MCC = (TP × TN) − (FP × FN)√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

where TP, FP, TN, and FN represent true positive, false 
positive, true negative, and false negative, respectively. The 
AUC and AUPRC represent the aggregated classification 
performance across all possible thresholds. The best model 
was selected based on the highest AUC.

Results

Feature analysis

Thirty-four features, classified into four categories, were 
used to develop the model. Figure 2 illustrates the Spear-
man rank correlation coefficients calculated among indi-
vidual features. Most conservation scores show moderate 
to high positive correlations with each other and with pLi, 
while showing moderate to weak negative correlations 
with m100_AAFalt, m100_AFalt, gnomAD_AFv2, gno-
mAD_AFv4, pNull, and pRec. CFref shows a weak positive 
correlation with the codon-based conservation score and a 
moderate negative correlation with codonST and NPFref. 
Similarly, CFalt shows a weak positive correlation with 
codonST and a moderate negative correlation with NPFalt. 
aaST shows a moderate positive correlation with codonST, 
BLOSUM62 and PAM250, alongside a moderate negative 
correlation with Grantham. Finally, gnomAD_AF(v2, v4) 
are highly positively correlated with each other and exhibit 

approach for interpreting machine learning models by attrib-
uting a prediction to the contributions of individual features 
(Lundberg 2017). It is based on coalitional game theory and 
Shapley values, providing strong theoretical foundations. It 
is a local explainability model based on Shapley values. The 
Shapley value is the average marginal contribution of a fea-
ture value across all possible coalitions.

Model performance evaluation and other prediction 
tools comparison

To assess the generalizability and superiority of the model 
performance, three test datasets were used and compared 
with twenty other prediction tools. The precalculated scores 
of these tools were obtained from dbNSFP v4.4a (Liu et 
al. 2020), which includes CADD (Rentzsch et al. 2019), 
ClinPred (Alirezaie et al. 2018), DEOGEN2 (Raimondi et 
al. 2017), FATHMM (Shihab et al. 2013), gMVP (Zhang 
et al. 2022), LIST-S2 (Malhis et al. 2020), M-CAP (Jaga-
deesh et al. 2016), MetaLR (Dong et al. 2015), MetaRNN 
(Li et al. 2022), MetaSVM (Dong et al. 2015), MutationAs-
sessor (Reva et al. 2011), MutPred (Li et al. 2009), MVP 
(Qi et al. 2021), Polyphen2(Hvar) (Adzhubei et al. 2010), 
PrimateAI (Sundaram et al. 2018), PROVEAN (Choi et 
al. 2012), REVEL (Ioannidis et al. 2016), SIFT (Ng and 
Henikoff 2003), VARITY (Wu et al. 2021), VEST4 (Carter 
et al. 2013). These tools used conservation properties as a 
foundation for model development and incorporated vari-
ous combinations of other prediction scores, frequency, 
functional annotations, structural properties, interactions, 
domain information, epigenomic features, and other prop-
erties as features. CADD, ClinPred, DEOGEN2, M-CAP, 
MetaLR, MetaRNN, MetaSVM, MutPred, MVP, REVEL, 
and VARITY incorporated other prediction scores or AF 
as features, which were known to enhance predictive per-
formance. Tools such as CADD and VEST4, which were 
designed to predict pathogenic variants in both coding and 
non-coding regions, also incorporated epigenomic proper-
ties. Among the twenty tools, tree-based algorithms such as 
ClinPred, DEOGEN2, M-CAP, MutPred, REVEL, VEST4, 
and VARITY were the most commonly used. Additionally, 
DNN-based algorithms including gMVP, MetaRNN, MVP, 
and PrimateAI, as well as probabilistic-based algorithms 
like FATHMM, LIST-S2, MutationAssessor, PROVEAN, 
and SIFT, were also employed. Furthermore, M-CAP, 
MetaRNN, MVP, REVEL, VARITY, and gMVP were spe-
cifically designed to predict the pathogenicity of rare vari-
ants. The thresholds for each prediction tool were based on 
the dbNSFP or were set as recommended in the original 
studies.

The eight performance metrics used to evaluate the clas-
sification performance of the model included accuracy, 
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Figure  3A presents a comparison of the eight per-
formance metrics for each model using a radar plot. The 
tree-based gradient boosting algorithms XGBoost, Light-
GBM, and CatBoost exhibit superior performance across 
all metrics, whereas the DNN performed the worst. Tab-
Net, a deep-learning-based algorithm optimized for struc-
tured data, outperformed the DNN but still did not match 
the performance of the tree-based algorithms. It seems 
that applying a DNN requires appropriate architecture tai-
lored to genomic data. Among three tree-based algorithms, 
XGBoost achieved the best performance and was selected 
as the final model, named PRP. Using 10-fold cross-valida-
tion on the training dataset (Fig. S2), PRP achieves the fol-
lowing performance metrics: AUC 0.9983, AUPRC 0.9985, 

a moderate positive correlation with BLOSUM62 and 
PAM250.

Model development

Five ML algorithms were applied to identify the most 
effective model for predicting the pathogenic variants. The 
best hyperparameters for each ML algorithm, tuned using 
Optuna, are provided in Table S3. The hyperparameter 
importance for each model is shown in Fig. S1. The learning 
rate is the most important hyperparameter for the XGBoost, 
LightGBM, TabNet, and DNN models, while max_depth is 
the most important hyperparameter for the CatBoost model.

Fig. 2  Correlation between 34 features used to train PRP. The heatmap illustrates the Spearman rank correlation coefficients between 34 features 
for the PRP training dataset
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The better the performance, the more distinct the distribu-
tion of scores, while as performance decreases, there is 
more overlap between the distributions of pathogenic and 
benign variants. Test Dataset 1 consists of missense vari-
ants (n = 3,173, 64.49%), stop_gained variants (n = 1,726, 
35.08%), start_lost variants (n = 18, 0.37%), and stop_lost 
variants (n = 3, 0.06%). Most other prediction tools cover 
only missense variants, resulting in a missing rate of over 
40%, while even CADD, which covers the entire genome, 
has a missing rate of 7% (Table S5). 

Test Dataset 2, composed entirely of missense vari-
ants from UniProt (n = 13,127), demonstrates the best per-
formance of PRP (AUC = 0.9958), surpassing other tools 
that also used UniProt data for training, including gMVP 
(AUC = 0.9604), MetaLR (AUC = 0.9559), DEOGEN2 
(AUC = 0.9492), MetaSVM (AUC = 0.9441), and MVP 
(AUC = 0.9315). PRP achieves an AUPRC of 0.9949, Accu-
racy of 0.9848, F1-score of 0.9854, MCC of 0.9697, Preci-
sion of 0.9923, Recall of 0.9785, and Specificity of 0.9917 
(Fig. 5A, B, Table S6, Fig. S3). The highest missing rate is 
observed in MutPred (n = 5,880, 44.79%), while MetaRNN 
and CADD have the lowest missing rate (n = 540, 4.11%). 
PRP prediction scores are highly concentrated around 1 for 
pathogenic variants, and benign variants are clustered near 
0 (Fig. 5C). The distribution of prediction scores from other 
prediction tools is shown in Fig. S5.

Using Test Dataset 3, which consists of ClinGen data 
with 239 TPs and 43 TNs, PRP shows superior performance, 
achieving an AUC of 0.9914 and AUPRC of 0.9984 (Fig. 6). 
In contrast, other tools, including ClinPred and MetaRNN, 
performed poorly on this dataset (Table S7; Fig. S3). The 
distribution of prediction scores from other prediction 

Accuracy 0.9833, F1-score 0.9839, MCC 0.9666, Precision 
0.9849, Recall 0.9829, and Specificity 0.9838. The perfor-
mance metrics for each algorithm are listed in Table S4.

Performance evaluation and comparison

Three independent test datasets were used to evaluate the 
generalizability of PRP and compare its performance to 
twenty previously published pathogenic prediction tools 
including CADD, ClinPred, DEOGEN2, FATHMM, gMVP, 
LIST-S2, M-CAP, MetaLR, MetaRNN, MetaSVM, Muta-
tionAssessor, MutPred, MVP, Polyphen2(Hvar), PrimateAI, 
PROVEAN, REVEL, SIFT, VARITY, and VEST4. The per-
formance of PRP on the three test datasets is similar across 
all eight performance metrics, indicating good generaliz-
ability (Fig. 3B). However, the performance of other tools 
varies depending on the dataset (Fig. S3).

Using Test Dataset 1, which consisted of the latest ClinVar 
data, including 2,841 TPs and 2,079 TNs, PRP outperforms 
other prediction tools, achieving the highest AUC of 0.9993 
for distinguishing between pathogenic and benign vari-
ants, followed by ClinPred (AUC = 0.9951) and MetaRNN 
(AUC = 0.9949) (Fig. 4A). PRP also demonstrates the best 
performance across all metrics: AUPRC 0.9995, accuracy 
0.9902, F1-score 0.9915, MCC 0.9800, Precision 0.9926, 
Recall 0.9905, and Specificity 0.9899 (Fig. 4B). The eight 
performance metrics of the twenty prediction tools are sum-
marized in Table S5 and Fig. S3. The distribution of PRP 
scores shows a clear bimodal pattern, and using a threshold 
of 0.5, pathogenic variants can be effectively differentiated 
from benign variants (Fig. 4C). The distribution of predic-
tion scores from other prediction tools is shown in Fig. S4. 

Fig. 3  Performance of models in the classification of pathogenic vari-
ants. (A) The performance of five ML models using the training data-
set. (B) The performance of three test datasets using the XGBoost 

model. Each axis represents different performance metrics such as 
AUC, AUPRC, Accuracy, F1-score, MCC, Precision, Recall, and 
Specificity. The closer each axis indicates better performance
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and benign variants using a threshold value of 0.5, achiev-
ing both high sensitivity and high specificity.

Performance evaluation in rare variants

To assess the performance of PRP in predicting rare vari-
ants, its performance was evaluated across five AF ranges 
and compared with four other prediction tools- ClinPred, 
MetaRNN, REVEL, and VARITY. ClinPred and MetaRNN 
incorporated AFs as features, while MetaRNN, REVEL, and 
VARITY were specifically designed to predict the pathoge-
nicity of rare variants. The performance of PRP remains 
consistent across all AF ranges, whereas the performance of 
other tools declines as AF decreases (Fig. 8, Table S8). Spe-
cifically, ClinPred and MetaRNN exhibit a notable reduc-
tion in specificity, representing the ability to accurately 
predict true negative (TN) variants, particularly when AF 
is below 0.001. REVEL, which used data filtered with 0.1% 
< AF < 1% as the training set, and VARITY, which trained 
on data with AF < 0.5%, both display consistently low per-
formance across all AF ranges. These results represent the 
robustness of PRP in distinguishing between pathogenic and 
benign variants, even when predicting rare variants.

tools is shown in Fig. S6. Test Dataset 3 includes missense 
(n = 219, 77.66%), stop_gained (n = 54, 19.15%), start_lost 
(n = 8, 2.84%), and stop_lost variants (n = 1, 0.35%). The 
missing rate for most other tools exceeds 20%, with gMVP 
exhibiting the highest missing rate at 65.25% (n = 184) and 
CADD the lowest at 2.13% (n = 6).

Performance of sensitivity and specificity

Figure 7 shows the sensitivity and specificity performance 
of PRP and twenty other prediction tools across three test 
datasets. The thresholds for each prediction tool were either 
based on the dbNSFP or set as recommended in the original 
studies. Consistent with previous research (Li et al. 2018; 
Niroula and Vihinen 2019), most prediction tools tend to 
overestimate the number of pathogenic variants, resulting in 
high sensitivity but low specificity. Except for CADD and 
M-CAP, most ensemble-based prediction tools that integrate 
various pathogenic prediction scores as features show less 
tendency to overestimate sensitivity compared to the non-
ensemble-based prediction tools. However, these tools still 
tend to overestimate the number of pathogenic variants. In 
contrast, PRP effectively differentiates between pathogenic 

Fig. 4  Performance of PRP using test dataset 1. (A) ROC curve shows 
a performance comparison of PRP and 20 other prediction tools. (B) 
Radar Plot shows the eight performance metrics of PRP. Each score 

indicates in parenthesis. (C) The distribution of PRP prediction scores 
for the pathogenic (orange line) and benign (blue line) variants. The 
red vertical line indicates the threshold (0.5)

 

1 3



Human Genetics

as phasCons and phyloP. Higher m100_AAFref and lower 
m100_AAFalt are associated with a higher probability of 
being pathogenic variants. The human-specific substitution 
metrics, such as aaST and codonST, are found to be more 
significant than the cross-species substitution metrics like 
BLOSUM62, PAM250, and Grantham. In all cases, a higher 
frequency of substitution is corelated with a lower probabil-
ity of pathogenicity.

PRP can interpret variant prediction results using SHAP. 
Figure 10 shows the waterfall plot and decision plot of the 
prediction of variants for randomly selected true positive 
and true negative. These plots allow the interpretation of 
how each feature contributes to the final prediction.

Discussion

Distinguishing between pathogenic and benign variants is 
crucial for the clinical application of genomics. Accurate 
prediction of pathogenic variants serves as the foundation of 
personalized medicine, enabling precise diagnosis and indi-
vidualized treatment through genomic medicine. Despite 
the availability of several prediction tools, their perfor-
mance still needs improvement on rare variants.

Feature of importance

SHAP was applied to measure feature importance in the 
XGBoost model to interpret how features influence the pre-
diction of pathogenic variants. Figure 9 shows the bar and 
summary plots of the top-ranked 20 features. The summary 
plot combines feature importance with color-coded feature 
values. Among the four categories of features, the most 
important category is frequency, which includes features 
such as gnomAD_AFv2, gnomAD_AFv4, and NPFalt. gno-
mAD_AFv2 and gnomAD_AFv4 are the most important 
features, and the smaller AF results in higher SHAP val-
ues, indicating an increased probability of pathogenic vari-
ants. In contrast, a larger AF results in lower SHAP values, 
indicating a decreased probability of pathogenic variants, 
and thus a higher likelihood of benign variants. This obser-
vation is consistent with a previous study(Alirezaie et al. 
2018), implying that AF is a crucial feature for predicting 
pathogenic variants. Lower NPFalt, indicating that amino 
acids with differing neighbor preferences are less likely to 
replace each other compared to those with similar neigh-
bor preferences, is associated with a higher probability of 
pathogenic variants. m100_AAFref and m100_AAFalt are 
more important than the other conservation scores, such 

Fig. 5  Performance of PRP using test dataset 2. (A) ROC curve shows 
a performance comparison of PRP and 20 other prediction tools. (B) 
Radar Plot shows the eight-performance metrics of PRP. Each score 

indicates in parenthesis. (C) The distribution of PRP prediction scores 
for the pathogenic (orange line) and benign (blue line) variants. The 
red vertical line indicates the threshold (0.5)
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significance. To enhance its ability to discriminate between 
pathogenic and benign rare variants, PRP includes extremely 
rare benign variants in its training dataset. PRP consistently 
demonstrates superior overall performance compared to 
other tools, particularly in distinguishing pathogenic from 
uncommon benign variants across a broad range of rare 
AF thresholds. PRP maintains consistent performance even 
with rare variants, whereas other prediction tools exhibit sig-
nificant declines in specificity when handling rare variants. 
These results indicate the robustness of PRP in accurately 
distinguishing between pathogenic and benign variants, 
even under the challenging conditions of rare variant pre-
diction. Third, by using new features without relying on 
other prediction scores, PRP shows superior performance 
compared to metaRNN and ClinPred, which depend on mul-
tiple prediction scores like SIFT and PolyPheen2. Although 
incorporating other prediction scores as features has been 
shown in several studies to enhance discriminative power, 
this approach risks inflating the performance of tools that 
rely on external prediction scores. Fourth, PRP covers all 
types of nsSNVs in the coding region, including missense, 
start_lost, stop_gained, and stop_lost variants. In contrast, 
other prediction tools primarily focus on predicting one or 
a limited set of specific variant types. Most tools specialize 

In this study, PRP improved performance on rare variants 
and expanded the coverage of variant types compared to 
other prediction tools by utilizing various novel biological 
features, without relying on the commonly used prediction 
scores that others depend on for performance enhancement. 
PRP leveraged a combination of previously unused fea-
tures, such as CF, NPF, multiz100way, codonST, and aaST. 
The PRP method, based on XGBoost - a powerful gradi-
ent boosting framework - tuned with Optuna for hyperpa-
rameter optimization, and analyzed with SHAP for feature 
importance, demonstrated superior, generalizable, and inter-
pretable results.

PRP offers several strengths. First, compared to other 
prediction tools, PRP achieves robust performance across 
all eight performance metrics on three test datasets. While 
other tools exhibit varying performance depending on the 
dataset and tend to overestimate pathogenic variants, lead-
ing to imbalances between sensitivity and specificity. PRP 
consistently achieves high sensitivity and specificity, mak-
ing it a reliable tool across datasets. Second, PRP improves 
performance not only for common variants but also for 
rare variants. Advances in sequencing technology have led 
to the increasing identification of rare variants, which will 
constitute a significant proportion of variants of unknown 

Fig. 6  Performance of PRP using test dataset 3. (A) ROC curve shows 
a performance comparison of PRP and 20 other prediction tools. (B) 
Radar Plot shows the eight-performance metrics of PRP. Each score 

indicates in parenthesis. (C) The distribution of PRP prediction scores 
for the pathogenic (orange line) and benign (blue line) variants. The 
red vertical line indicates the threshold (0.5)
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predict other variant types and resulting in missing values. 
Furthermore, tools that rely on multiple prediction scores as 
features are also prone to missing values when one or more 
of these scores are unavailable.

in missense variants, while tools like CADD and VEST4 
encompass several variant types, including those in both 
coding and non-coding regions. Tools focusing on missense 
variants are limited in their ability to handle the diversity of 
variants present in exome sequencing data, often failing to 

Fig. 7  Sensitivity and specificity plot. Three plots illustrate the perfor-
mance of other prediction tools compared to PRP. Higher sensitivity 
and specificity indicate better performance. The red marker represents 
PRP. Ten blue markers represent non-ensemble-based tools, while 

ten orange markers represent ensemble-based tools, which use other 
pathogenic prediction scores as a feature. (A) Test Dataset (1) (B) Test 
Dataset (2) (C) Test Dataset 3
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in performance comparisons. To achieve good performance 
with a DNN-based algorithm, effectively incorporating 
genomic information into the architecture appears neces-
sary, as seen in MetaRNN.

Hyperparameter tuning plays a crucial role in maximiz-
ing the model performance and generalizability. Grid search 
is the most common method for optimizing parameters. 

Among the five ML algorithms tested to determine the 
most appropriate one for model development, the tree-
based gradient boosting algorithms all showed good perfor-
mance. Tree-based algorithms were the most widely used in 
pathogenic prediction tools such as ClinPred, DEOGEN2, 
M-CAP, MutPred, REVEL, VARITY, and VEST4. In addi-
tion to PRP, other tree-based tools also outperformed others 

Fig. 9  Feature importance for features used in PRP. (A) SHAP bar plot 
shows the most important 20 features for the prediction of pathogenic 
variants. The x-axis represents each feature’s average absolute SHAP 
values, and the y-axis displays the features. (B) SHAP summary plot 
combined the top-ranked 20 features importance with feature values. 
Each dot represents distinct variants color-coded according to the 

value of corresponding feature on the y-axis and their associated Shap-
ley value on the x-axis. Positive values denote a positive influence 
on prediction, while negative values suggest a negative influence. The 
color represents the value of the feature from low to high. Each row 
represents a feature

 

Fig. 8  3D scatter plot of AUC, recall and specificity. Three plots illustrate the performance of PRP compared to four other prediction tools across 
five allele frequency ranges in three test datasets. (A) Test Dataset (1) (B) Test Dataset (2) (C) Test Dataset 3
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alignment techniques, were incorporated as features. Among 
these, multiz100way was identified as the most important. 
Conservation scores based on protein sequence alignment 
outperformed those based on DNA sequence alignment for 
pathogenic variant prediction. Human-specific substitution 
metrics, such as codonST and aaST, were more effective for 
predicting pathogenic variants than cross-species substitu-
tion metrics, such as BLOSUM62 and PAM250. These fea-
tures are particularly useful for the evaluation of the impact 
of variants.

While PRP represents a significant advancement, several 
limitations remain that should be addressed in future stud-
ies. Although it incorporates various biological features, 
it does not integrate structure-based features. Variants can 
affect the three-dimensional structure of proteins, poten-
tially altering their stability and interaction interfaces. These 
alterations may disrupt signaling or metabolic pathways, 
thereby contributing to disease development. Previous tools 

However, this method lacks a pruning operation, leading to 
long search times. This study utilized Optuna to efficiently 
find optimal hyperparameters.

To interpret the contribution of each feature to the predic-
tion of pathogenic variants, PRP utilized SHAP, a tool com-
monly used to interpret predictions made by ML models. As 
in previous research(Alirezaie et al. 2018), AFs were identi-
fied as the most important features. PRP leveraged AFs from 
the largest available database, gnomAD, without setting 
specific thresholds for either pathogenic or benign variants. 
New features used in PRP, such as NPF, multiz100way, 
codonST, and aaST, demonstrated greater predictive influ-
ence compared to previously utilized features. NPF, which 
reflects the tendency of amino acids with differing neigh-
bor preferences to replace each other less frequently than 
those with similar preferences, proves helpful in pathogenic 
prediction. Additionally, conservation scores at both the 
DNA and protein levels, derived using different multiple 

Fig. 10  Local interpretation of a single variant. SHAP waterfall plot 
(A) and SHAP decision plot (C) of true positive variant. SHAP water-
fall plot (B) and decision plot (D) of true negative variant. In the water-
fall plot, red indicates a positive contribution, while blue indicates a 
negative contribution. The value next to each feature represents the 
actual value of the feature, and the value next to the color represents 

the SHAP value. E[f(X)] indicates the expected value of prediction, 
and f(x) indicates the final prediction in log-odds units. In the decision 
plot, the x-axis represents SHAP value, converted from log odds to 
probability and the y-axis displays the features which are ordered by 
descending importance. The value in parentheses is the actual value 
of each feature
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datasets are also accessible via Zenodo at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​5​​2​8​1​​/​z​e​​n​
o​d​o​.​1​5​1​9​5​2​8​5.
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that incorporate structure-related features have shown lim-
ited performance, indicating the need for the identification 
of more appropriate structure-related features. Furthermore, 
it is designed to predict the pathogenic risk of single vari-
ants. However, since human diseases are often influenced 
by the combined effects of multiple mutations, considering 
the potential impact of variant combinations may provide 
a more comprehensive understanding of disease mecha-
nisms and enhance predictive power. In addition, although 
it is limited to predicting the effects of variants in coding 
regions, most of the human genome consists of non-cod-
ing sequences. Variants in non-coding regions can also 
influence disease development by affecting gene regula-
tion, splicing, or chromatin structure. To enhance its utility 
in clinical genetic diagnostics, PRP needs to be extended 
to effectively analyze non-coding regions as well. With 
the increasing discovery of both pathogenic and benign 
extremely rare variants driven by advances in sequencing 
technologies, it is essential to identify and incorporate novel 
biological features that better reflect their distinct character-
istics. Additionally, for user convenience, a web interface 
will be provided, offering access to the PRP scores, biologi-
cal annotations for variants, and decision plots for predic-
tion interpretation. These efforts will help further improve 
classification performance and support clinical application.
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