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Abstract
Background Accurate pathogenicity prediction of rare variants in coding regions is crucial for prioritizing candidate 
variants in human diseases and advancing personalized precision medicine. Although many prediction methods have 
been developed, it remains unclear how they perform specifically on rare variants.

Results In this study, the performance of 28 pathogenicity prediction methods was assessed using the latest ClinVar 
dataset, with a focus on rare variants and various allele frequency (AF) ranges. Ten evaluation metrics were employed 
to comprehensively assess the predictive performance of each method. The methods were selected based on their 
training approaches, including whether the training dataset was filtered by AF and whether AF was incorporated as a 
feature. Most methods focused on missense and start-lost variants, covering only a subset of nonsynonymous SNVs. 
The average missing rate of approximately 10% was observed in these variants, indicating that prediction scores were 
unavailable for them. MetaRNN and ClinPred, which incorporated conservation, other prediction scores, and AFs as 
features, demonstrated the highest predictive power on rare variants. For most methods, specificity was lower than 
sensitivity. Across various AF ranges, most performance metrics tended to decline as AF decreased, with specificity 
showing a particularly large decline.

Conclusions These results provide insights into the strengths and limitations of each method in predicting the 
pathogenicity of rare variants, which may guide future improvements in predictive models. Furthermore, while AF 
and existing prediction scores offer valuable information for prediction methods, the identification of novel biological 
features is essential to overcome current limitations and further improve predictive performance.
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Background
The development of next-generation sequencing (NGS) 
has revolutionized our understanding of genetic varia-
tions, leading to the discovery of a vast number of genetic 
variants [1]. These advancements have enabled the iden-
tification of a broad spectrum of genetic variations across 
a wide range of allele frequencies (AFs).

Genetic variation encompasses changes ranging from 
single nucleotide alterations to large-scale chromosomal 
rearrangements. Among these, single nucleotide vari-
ants (SNVs) are the most prevalent type, accounting for 
approximately 0.1% of the human genome [2]. Nonsynon-
ymous single nucleotide variants (nsSNVs), which result 
in amino acid changes in the coding region, are of par-
ticular interest because of their potential impact on gene 
function and their association with various diseases [3].

AF of genetic variants spans a wide spectrum, from 
common to rare. Rare variants, defined as those with a 
minor allele frequency (MAF) of less than 0.01 [4], have 
become a key focus in genetic research owing to their 
potential contributions to both complex and Mendelian 
diseases [5, 6].

However, the majority of variants identified by NGS 
remain of unknown significance. This is because experi-
mental validation of large numbers of variants is often 
infeasible [7], and association studies require prohibi-
tively large sample sizes to detect rare variants with 
modest effect sizes and high statistical power [8]. Under-
standing the functional consequences of rare variants is 
critical for advancing genetic research, improving disease 
diagnosis, and refining predictive models in personal-
ized medicine. Various computational prediction meth-
ods for pathogenicity classification of variants have been 
developed and are widely used in many studies to address 
these challenges.

Although several previous studies have compared the 
performance of these methods [9–19], how these meth-
ods perform specifically on rare variants has not been 
thoroughly investigated. Therefore, in this study, we 
assessed the performance of 28 pathogenicity predic-
tion methods, with a focus on rare variants and various 
AF ranges. This evaluation provides insights into the 
strengths and limitations of each method in predicting 
pathogenicity on rare variants, which can guide future 
improvements in predictive models.

Methods
Data collection and analysis were performed using Perl 
and Python. The data and code used for the analysis are 
available at  h t t p  s : /  / g i t  h u  b . c  o m /  D N A v  i g  a t i o n / C o m p a r e.

Collection of the benchmark dataset
The ClinVar [20] database, which comprises clinically 
observed genetic variants, was used as the benchmark 

dataset. To avoid overlap with the training datasets used 
for the prediction methods, SNVs registered between 
2021 and 2023 were selected (N = 1,447,467). These 
SNVs were filtered based on the following criteria. First, 
SNVs with clinical significance classified as pathogenic, 
likely pathogenic, or pathogenic/likely pathogenic were 
labeled as pathogenic, whereas those classified as benign, 
likely benign, or benign/likely benign were labeled as 
benign (N = 759,388). Second, to reduce misclassification 
in the curated data, SNVs with a review status of prac-
tice_guidelines, reviewed_by_an_expert_panel, or cri-
teria_provided_multiple_submitters_no_conflicts were 
retained (N = 68,685). Third, nsSNVs, including missense, 
start_lost, stop_gained, and stop_lost variants in coding 
regions, were selected. After applying all filters, 8,508 
nsSNVs remained, comprising 4,891 pathogenic and 
3,617 benign variants. These included 5,510 missense, 53 
start_lost, 2,940 stop_gained, and 5 stop_lost variants.

Allele frequency of the benchmark dataset
To select rare variants from the benchmark dataset, 
six AF datasets from four different databases were col-
lected. The four databases were the Exome Sequencing 
Project (ESP) [21], the 1000 Genomes Project (1000GP, 
phase 3) [22], and the Exome Aggregation Consortium 
(ExAC) [23], and the Genome Aggregation Database 
(gnomAD, v4.0) [24]. The six AF datasets consisted of the 
African American samples of ESP (ESP_AA, N = 2,217), 
the European American samples of ESP (ESP_EA, N = 
4,298), the total samples of 1000GP (1000GP, N = 2,504), 
the total samples of the ExAC (ExAC, N = 60,706), the 
whole genome samples of the gnomAD (gnomAD_G, N = 
76,215), and the whole exome samples of the gnomAD 
(gnomAD_E, N = 730,947). AF data for ESP, 1000GP, and 
ExAC were obtained from the dbNSFP database (v4.4a) 
[25], whereas data for gnomAD were obtained from its 
database. Rare variants were defined as those with an AF 
of less than 0.01 in gnomAD. To evaluate performance 
across various AF ranges, AF was categorized into six 
intervals, each decreasing by a factor of 10 from 1 to 0.

Selection of pathogenicity prediction methods
To evaluate the performance of pathogenicity prediction 
methods on rare variants, precalculated prediction scores 
from 28 methods were obtained via the dbNSFP.

These methods were categorized into four groups 
based on their handling of AF in the training dataset, 
specifically considering whether the dataset was filtered 
by AF and whether AF was incorporated as a feature.

The first group includes methods specifically trained 
on rare variants to predict their pathogenicity, such as 
FATHMM-XF [26], M-CAP [27], MetaRNN [28], MVP 
[29], REVEL [30], VARITY (ER, R) [31], and gMVP 
[32]. The second group consists of methods trained 

https://github.com/DNAvigation/Compare
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using common variants as the benign dataset, includ-
ing FATHMM-MKL [33], LIST-S2 [34], PrimateAI [35], 
and VEST4 [36]. The third group comprises methods 
that incorporate AF as a feature, such as CADD [37, 38], 
ClinPred [39], DANN [40], Eigen [41], MetaLR [11], and 
MetaSVM [11]. The final group includes methods that 
do not utilize AF information, such as DEOGEN2 [42], 
FATHMM [43], GenoCanyon [44], MutationAsses-
sor [45], MutPred [46], Polyphen2 (HDIV, HVAR) [47], 
PROVEAN [48], SIFT [49], and SIFT4G [50]. For variants 
with multiple prediction scores, values corresponding to 
canonical transcripts were used. Thresholds for distin-
guishing pathogenic from benign variants were obtained 
from either the dbNSFP or the original studies.

Because prediction scores were not consistently avail-
able for all variants, only 1,154 variants out of the 8,508 
in the benchmark dataset, all of which were missense, 
had prediction scores available from all 28 methods. To 
avoid significant data loss, all variants with prediction 
scores for each method were used in the performance 
comparison.

Correlation analysis among prediction methods
To investigate the relationships among the 28 predic-
tion methods, a correlation analysis was performed using 
the Spearman correlation coefficient. First, for meth-
ods where a lower score indicates higher risk, such as 
FATHMM, PROVEAN, SIFT, and SIFT4G, the scores 
were transformed so that higher scores represent higher 
risk, aligning with the interpretation of risk across all 
methods. Next, methods with score ranges outside the 0 
to 1, such as CADD, Eigen, FATHMM, MetaSVM, Muta-
tionAssessor, and PROVEAN, were scaled before calcu-
lating the correlation. Finally, hierarchical clustering was 
applied to group the methods based on similarities in 
prediction scores.

Metrics used for performance evaluation
The ten metrics used to compare the performance of the 
pathogenic prediction methods include sensitivity, speci-
ficity, precision, NPV (negative predictive value), accu-
racy, F1-score, Matthews correlation coefficient (MCC), 
geometric mean (G-mean), area under the receiver 
operating characteristic curve (AUC), and area under 
the precision-recall curve (AUPRC) [51, 52]. Sensitiv-
ity, specificity, precision, NPV, accuracy, F1-score, MCC, 
and G-mean were calculated based on thresholds from 
the dbNSFP or the original studies. Unlike other met-
rics, both AUC and AUPRC are not influenced by the 
threshold.

Sensitivity (also referred to as the recall or true posi-
tive rate) represents the fraction of true positives cor-
rectly predicted as positive. Specificity (also referred  
to as the true negative rate) represents the fraction of 

true negatives correctly predicted as negative. Precision 
(also referred to as positive predictive value) represents 
the fraction of true positives among all the predicted 
positives. Negative predictive value (NPV) represents 
the fraction of true negatives among all the predicted 
negatives. Accuracy represents the fraction of correct 
predictions (true positives and true negatives) out of all 
predictions. The F1-score represents the harmonic mean 
of precision and sensitivity, ranging from 0 to 1, with a 
higher score indicating better performance. MCC rep-
resents the correlation coefficient between the observed 
and predicted classifications. It ranges from − 1 to 1, 
where 1 indicates a perfect prediction, 0 indicates a pre-
diction that is no better than random, and − 1 indicates a 
completely incorrect prediction. G-mean represents the 
balance between sensitivity and specificity, and is par-
ticularly useful for evaluating highly imbalanced datasets.

The receiver operating characteristic (ROC) curve 
illustrates the trade-off between sensitivity and specific-
ity at different thresholds, whereas the precision-recall 
(PR) curve shows the trade-off between precision and 
recall across various thresholds. The AUC and AUPRC 
provide an overall measure of classification performance 
across all possible thresholds. A value of 1 for the AUC 
and AUPRC indicates perfect classification, whereas a 
value of 0.5 suggests performance equivalent to random 
chance. The best model was selected based on having 
the highest AUC. It can be calculated using the following 
formula:

 
Sensitivity = TP

TP + FN

 
Specificity = TN

TN + FP

 
Precision = TP

TP + FP

 
NPV = TN

TN + FN

 
Accuracy = TP + TN

TP + TN + FP + FN

 
F1 score = 2 × Precision × Sensitivity

Precision + Sensitivity

 
MCC = (TP × TN) − (FP × FN)√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)

 G − Mean =
√

Sensitivity × Specificity
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where TP, FP, TN, and FN represent true positive, false 
positive, true negative, and false negative, respectively.

Results
Summary of pathogenicity prediction methods
The characteristics of the 28 pathogenicity prediction 
methods assessed in this study are summarized in Table 
S1. Figure 1 shows the categories of algorithms and fea-
tures used in these methods.

These methods employed a range of approaches, from 
probabilistic-based and traditional machine learning to 
deep learning, along with various biological properties as 
features to build a model. Early prediction methods, such 
as SIFT and PolyPhen2, were developed using protein 
sequences and probabilistic-based algorithms, including 
position-specific scoring matrices (PSSMs), hidden Mar-
kov models (HMMs), expectation-maximization (EM), 
combinatorial entropy formalism (CEF), and Bayes’ rule. 
With the increase in publicly available variant data, pre-
diction methods were developed based on traditional 
machine-learning algorithms, such as random forest 
(RF) and support vector machine (SVM). More recently, 
deep-learning-based methods emerged. Among the tree-
based prediction methods, random forest (RF), gradi-
ent boosting tree (GBT), and eXtreme gradient boosting 
(XGBoost) were commonly used. These algorithms pri-
marily employ ensemble classifiers, which train multiple 
weak classifiers, such as decision trees, and combine their 
outputs (e.g., voting) to achieve better predictive perfor-
mance. In deep neural network (DNN)-based methods, 
architectures such as DNN, ResNet, graph attention net-
work (GAT), and recurrent neural network (RNN) were 
used. In other-based methods, logistic regression (LR), 
multiple kernel learning (MKL), naïve bayes (NB), and 
support vector machine (SVM) were employed.

The most commonly used feature is conservation, 
which was utilized in all methods. These features include 
sequence homology using multiple sequence alignment 
and evolutionary conservation metrics such as phast-
Cons, phyloP, and GERP. The second most frequently 
used feature is other prediction scores, such as those from 
methods such as SIFT and PolyPhen2. Among these, 
SIFT was the most frequently used prediction score, 
appearing in 13 prediction methods, such as CADD, 
ClinPred, DANN, Eigen, M-CAP, MetaLR, MetaSVM, 
MetaRNN, MutPred, MVP, REVEL, and VARITY (R, ER) 
(Fig. S1). The metaRNN incorporates the most prediction 
scores from 16 different prediction methods, including 
CADD, DEOGEN2, Eigen, FATHMM-XF, GenoCanyon, 
M-CAP, MutationAssessor, MutPred, MVP, PolyPhen2 
(HDIV, HVAR), PrimateAI, PROVEAN, REVEL, SIFT, 
and VEST4.

Frequency properties, such as AF from ESP, 1000GP, 
ExAC, and gnomAD, were used as features in seven 

prediction methods. AF was also used as a criterion for 
filtering rare variants or selecting common variants as 
the benign dataset in methods such as FATHMM-MKL, 
FATHMM-XF, gMVP, LIST-S2, M-CAP, MetaRNN, MVP, 
PrimateAI, REVEL, VARITY (ER, R), and VEST4. Func-
tional properties, including DNA-binding sites and CpG 
island locations, were incorporated into nine methods. 
Structural properties, such as secondary structure, sol-
vent accessibility, transmembrane helices, and coiled-coil 
structures, were used in nine methods. Three methods 
used features related to interaction properties, such as 
protein-protein interactions. Seven methods consid-
ered amino acid properties, such as polarity, charge, and 
substitution matrices like BLOSUM62 and PAM250. 
Additionally, seven methods incorporated domain-
related properties, such as those from Pfam, whereas 
seven others have utilized epigenetic features, including 
methylation sites and histone modifications, especially 
for pathogenic prediction in noncoding regions. Finally, 
other properties, such as pathway and gene tolerance 
metrics such as the gene damage index (GDI), residual 
variance intolerance score (RVIS), and probability of 
being loss-of-function intolerant (pLI), were used in four 
methods. Most of these methods were designed to distin-
guish pathogenic from benign variants in coding regions, 
whereas seven methods, such as CADD, DANN, Eigen, 
FATHMM-MKL, FATHMM-XF, GenoCanyon, and 
VEST4, which incorporate epigenomic properties, have 
been developed to predict pathogenic variants in both 
coding and noncoding regions.

Variant types and missing rates in prediction methods
The benchmark dataset consisted of missense (N = 5,510, 
64.76%), start_lost (N = 53, 0.62%), stop_gained (N = 
2,940, 34.56%), and stop_lost (N = 5, 0.06%) variants. 
Figure 2 illustrates the coverage of variant type for each 
method in this dataset. Most methods focused on mis-
sense and start_lost variants, covering only two of the 
four variant types of nsSNVs, while MutationAssessor 
and PrimateAI covered only missense variants. Seven 
prediction methods, including CADD, DANN, Eigen, 
FATHMM-MKL, FATHMM-XF, GenoCanyon, and 
VEST4, covered all types of nsSNVs. These methods were 
developed for pathogenic variant prediction in both cod-
ing and noncoding regions.

Figure 3 shows the missing data for each method in the 
benchmark dataset (N = 8,508). Each column represents a 
prediction method, and each row corresponds to a vari-
ant, which has been grouped by variant type and sorted 
by chromosome and position. The colored regions rep-
resent the prediction scores available for variants, while 
the white regions indicate the absence of scores. Because 
most prediction methods did not cover stop-gained vari-
ants, which account for a large portion of this dataset, 
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the overall missing rate exceeds 30%. The missing rates 
and the number of available variants grouped by variant 
type for each method are listed in Table S2. Even when 
only missense variants were considered, most methods 

had a missing rate of approximately 10%, with MutPred 
having the highest missing rate of 54.52%, which is simi-
lar to previous research [53]. ClinPred covered some 
stop-gained variants, but its coverage was less than 7%. 

Fig. 1 Summary of algorithms and features used in 28 pathogenicity prediction methods. Based on the algorithms used, each method was labeled as 
Probabilistic-based, Tree-based, DNN-based, and Other-based. Based on the features included, each method was labeled as Conservation, Prediction 
Score, Frequency, Function, Structure, Interaction, Amino Acid, Domain, and Other-property
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Additionally, FATHMM-XF and Eigen did not provide 
prediction scores for chromosome X.

Correlation between prediction methods
To quantify the similarities among the prediction scores 
of the 28 methods, the Spearman rank correlation coef-
ficient was calculated using all variants (N = 8,508). The 
heatmap shows that the methods exhibit positive correla-
tions (Fig. 4).

GenoCanyon was weakly to moderately correlated with 
other methods, while FATHMM, M-CAP, and MutPred 
were weakly to moderately correlated with only a sub-
set of methods. The other methods were moderately to 
highly correlated with each other. The lowest correlation 
was between CADD and FATHMM-XF, whereas Clin-
Pred was highly correlated with most prediction meth-
ods. In hierarchical clustering, methods derived from 
the same study, such as VARITY_R and VARITY_ER, 

Fig. 2 Coverage of variant types in 28 prediction methods. The chord diagram illustrates the relationships between variant types and prediction meth-
ods, represented as curved arcs within a circle. Gray boxes denote prediction methods, while the blue, orange, green, and red boxes represent missense, 
start_lost, stop_gained, and stop_lost variants, respectively. The colored arcs connect the variant types covered by each prediction method
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PolyPhen2_HDIV and PolyPhen2_HVAR, SIFT and 
SIFT4G, and MetaLR and MetaSVM, were clustered 
together. Additionally, the Spearman rank correlation 
coefficient was calculated to quantify similarities among 
binary classifications (Fig. S2). The correlation obtained 
using binary classification based on the threshold of 
each method was lower than that obtained using predic-
tion scores, indicating that thresholds for each predic-
tion method could lead to varying classification results. 
CADD, GenoCanyon, and PrimateAI were the least 
correlated with the other methods, whereas MetaRNN, 
ClinPred, REVEL, and VARITY (ER, R) were highly cor-
related with each other.

Distribution of the benchmark dataset across different 
allele frequency ranges
To investigate the distribution of rare variants in the 
benchmark dataset, six AF datasets from four databases 
were used, including ESP (AA and EA), 1000GP, ExAC, 
and gnomAD (exome and genome), which are widely 
used as features in prediction methods or as filtering cri-
teria for training datasets. Missense and start_lost vari-
ants in the benchmark dataset (N = 5,563), found in most 
prediction methods, showed that pathogenic variants 
were predominantly distributed with AF < 1e-03, whereas 
benign variants were spread across a wide range of AFs, 
including both common and rare variants (Fig. S3).

ESP_AA, ESP_EA, and 1000GP were measured up 
to an AF of 1e-04, while ExAC and gnomAD_G were 
measured down to an AF of 1e-06, and gnomAD_E was 

measured down to an AF of 1e-07. In ESP (AA, EA) 
and 1000GP, where the sample size is fewer than 5,000, 
AF was measured only up to 1e-04, and AF < 1e-06 rep-
resents AF not observed in the corresponding data-
base. However, in ExAC and gnomAD (G, E), with a 
larger number of samples, AFs lower than 1e-04 were 
measured. The stop_gained and stop_lost variants (N = 
2,945) were mostly pathogenic, and a similar distribution  
was observed for the missense and start_lost variants 
(Fig. S4).

The parallel categories diagram illustrates the flow of 
AF changes across six AF ranges (Fig. S5). Some variants 
exhibited changes in AF across these ranges. Most benign 
variants that were not observed in AFs in ESP (AA, EA) 
and 1000GP were observed in ExAC and gnomAD (G, E) 
with larger sample sizes, whereas for pathogenic variants, 
AFs remained absent.

Performance comparison of prediction methods on rare 
variants
The performance of 28 prediction methods was assessed 
using the rare missense and start_lost variants, which 
consisted of 1,951 pathogenic and 2,638 benign variants 
(N = 4,589). Rare variants were selected based on an AF 
of less than 0.01 in gnomAD_E.

The distribution of the prediction scores for each 
method clearly exhibited a bimodal pattern in ClinPred, 
MetaLR, MetaRNN, MetaSVM, REVEL, and VARITY 
(ER, R), whereas the other methods did not (Fig. S6).

Fig. 3 Overall missing rate for each method in the benchmark dataset (N = 8,508). Each column represents a method, and each row corresponds to a 
variant. The blue, orange, green, and red regions correspond to the variant types of missense (N = 5,510), start_lost (N = 53), stop_gained (N = 2,940), and 
stop_lost (N = 5), respectively. The numbers below indicate the overall missing rate for each method
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A summary of the ten metrics evaluated for each 
method is provided in Table S3. The ROC curves were 
plotted, and the AUC was calculated (Fig. 5A). The results 
varied substantially across the 28 prediction methods, 
with AUCs ranging from 0.7349 to 0.9952 and AUPRCs 
ranging from 0.6517 to 0.9938. The best-performing 
methods, MetaRNN (AUC = 0.9952) and ClinPred (AUC 
= 0.9938), which integrated other prediction scores and 
AF as features, outperformed others in distinguishing 
pathogenic from benign variants.

To evaluate the performance of binary classifica-
tion, eight metrics were calculated for the threshold 

recommended by the authors, namely, sensitivity, speci-
ficity, precision, NPV, accuracy, F1-score, MCC, and the 
G-mean. The sensitivity ranged from 0.4052 to 0.9995 
(median = 0.9047), and eight methods (CADD, ClinPred, 
FATHMM-MKL, M-CAP, MVP, MetaRNN, VEST4, and 
gMVP) had a sensitivity > 0.95. The specificity ranged 
from 0.0982 to 0.9587 (median = 0.7435), and two meth-
ods (ClinPred, MetaRNN) had a specificity > 0.95. The 
specificity of most methods was much lower than the 
sensitivity. The sensitivity and specificity plot shows that 
most prediction methods tend to overestimate the num-
ber of pathogenic variants, leading to high sensitivity 

Fig. 4 Correlation of prediction scores among 28 prediction methods. The heatmap displays the Spearman rank correlation coefficients between predic-
tion methods, where colors closer to red indicate stronger positive correlations. Hierarchical clustering reveals the relationships and similarities among 
the methods (N = 8,508)
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but low specificity (Fig.  5B), which aligns with previous 
research [9, 10]. In particular, methods that integrated 
multiple pathogenic prediction scores as features had a 
lower tendency to overestimate sensitivity than meth-
ods that did not use them, which had a specificity below 
0.8. The greater the imbalance between sensitivity and 
specificity is, the larger the performance difference in 
terms of the precision and NPV (Fig. S8B). The precision 
ranged from 0.4505 to 0.9457 (median = 0.7250), and the 
NPV ranged from 0.6830 to 0.9962 (median = 0.9036). 
The accuracy ranged from 0.4814 to 0.9649 (median 
= 0.7947). Only two methods, MetaRNN (0.9649) and 
ClinPred (0.9607), had accuracies > 0.95. MetaRNN and 
ClinPred consistently showed the highest F1-scores, 
MCCs, and G-means. The performance of the predic-
tion methods on rare variants was slightly lower than that 
on all variants, which also included AF ≥ 1% (Fig. S7, Fig. 
S8A, Table S4). The order of the AUC between rare and 
all variants remained largely consistent, except for Eigen.

Performance comparison of prediction methods across 
various AF ranges
To investigate why the performance is lower on rare 
variants than on all variants, performance was evalu-
ated across various AF ranges. The AF ranges were 
categorized based on AFs from gnomAD_E, and the per-
formance of the prediction methods was assessed across 
six AF ranges using missense and start_lost variants. All 
prediction methods classified variants into pathogenic 

and benign using the threshold that was recommended 
by the author, regardless of the AF range.

Most methods exhibited varying performance across 
AF ranges and showed differences between the high-
est and lowest performance within these ranges (Table 
S5). The difference between the minimum and maxi-
mum AUCs across AF ranges for the prediction meth-
ods ranged from 0.0087 to 0.1308 (median = 0.0482) 
(Fig.  6A). The smallest differences were observed for 
MetaSVM (0.0087), MetaRNN (0.0106), REVEL (0.0145), 
M-CAP (0.016), ClinPred (0.0196), and MutationAs-
sessor (0.0198), whereas the largest difference was 
observed for GenoCanyon (0.1308). The sensitivity dif-
ference across these ranges varied from 0.0017 to 0.2343 
(median = 0.0803) (Fig.  6B). The smallest differences 
were observed for CADD (0.0017), DANN (0.0039), 
Eigen (0.0145), Polyphen2_HDIV (0.0163), and M-CAP 
(0.0187), whereas the largest difference was observed 
for MetaRNN (0.2343). The difference in specificity var-
ied from 0.0737 to 0.4333 (median = 0.1723) (Fig.  6C). 
The smallest differences were observed for PrimateAI 
(0.0737), VARITY_ER (0.0744), VARITY_R (0.0781), 
and MetaRNN (0.0944), while the largest difference was 
observed for FATHMM-MKL (0.4333).

For benign variants, where data were available across 
six AF ranges, the specificity tended to be lower for vari-
ants with lower AFs in most methods (Fig. 7). This trend 
was also observed in common variants (1% ≤ AF < 25%) 
in a previous study [10].

Fig. 5 Performance comparison of 28 prediction methods on rare variants (N = 4,589). A The ROC curve shows the performance comparison of 28 predic-
tion methods. B The sensitivity and specificity plot illustrates the relationship between sensitivity and specificity. Higher sensitivity and specificity indicate 
better performance. Fourteen blue markers represent methods without other pathogenic prediction scores as features, while fourteen orange markers 
represent methods that incorporate them.
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Fig. 6 Difference between the minimum and maximum performance across AF ranges. Each vertical line represents the difference between the maxi-
mum and minimum performance, sorted in descending order. A AUC, B Sensitivity, C Specificity
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Fig. 7 Specificity performance of 28 prediction methods across six AF ranges. Specificity tends to decline with decreasing AF. The red horizontal line 
represents sensitivity, while the blue horizontal line represents specificity on all missense and start_lost variants (N = 5,563). The methods are ordered in 
descending order of AUC
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Specificity tended to decline with decreasing AF in 
methods whose training datasets were filtered by AF or 
that incorporated AF as a feature, whereas those that 
do not utilize AF information did not exhibit this trend. 
For the seven methods, ClinPred, MetaRNN, MetaLR, 
MetaSVM, CADD, DANN, and Eigen, which incor-
porated AFs as features, specificity tended to decline 
as the AF decreased. MetaRNN, which was trained by 
filtering the dataset with AFs < 1%, showed a smaller 
decline in specificity compared to ClinPred, which 
was trained without AF filtering. However, its specific-
ity also decreased for variants with AF < 0.1%. Methods 
such as LIST-S2, FATHMM-MKL, and VEST4, which 
were trained using common variants as benign, exhib-
ited decreased specificity for both AF > 1% and AF ≤ 1%. 
VARITY (ER, R) and gMVP were trained by filtering 
out extremely rare benign variants with AF < 0.1%. The 
performance of these methods decreased for common 
variants but remained stable for rare variants as the AF 
decreased. However, their overall performance remained 
poor. Probabilistic-based methods that did not utilize AF 
information exhibited a U-shaped pattern, where speci-
ficity decreased and then increased as AF decreased. 
This trend was observed in methods such as Mutation-
Assessor, PolyPhen-2 (HDIV, HVAR), PROVEAN, and 
SIFT4G. In the case of PrimateAI, which only used com-
mon variants as benign in humans and other primates 
and did not include pathogenic variants, specificity was 
higher than sensitivity, and performance remained rela-
tively stable despite the decrease in AF.

In contrast, for pathogenic variants, data were avail-
able for an AF < 0.1%, which were categorized into 
three ranges. Sensitivity tended to increase as the AF 
decreased, supporting the general tendency that variants 
with lower AF are more likely to be pathogenic (Fig. S9).

Performance of the prediction methods in stop_gained 
and stop_lost variants
The performance of the seven prediction methods was 
assessed using stop_gained and stop_lost variants, com-
prising 2,940 pathogenic and 5 benign variants (N = 
2,945). In this dataset, all pathogenic variants were rare 
variants, with an AF < 0.1%, and more than 50% were not 
observed in the gnomAD_E. Among the five benign vari-
ants, one was a common variant with an AF > 0.1, while 
four were rare variants, with AFs ranging from 1e-5 to 
1e-4. The performance metrics are summarized in Table 
S6.

The MCC and G-mean, which are appropriate for 
evaluating performance on highly imbalanced data-
sets, ranged from − 0.0159 to 0.1038 and 0 to 0.9269, 
respectively. Four methods (CADD, DANN, Eigen, and 
FATHMM-MKL) showed sensitivity ranging from 0.8431 
to 1, while specificity was 0. This resulted in the G-mean 

and MCC of 0 or even negative, suggesting performance 
similar to random guessing. These methods tended to 
overestimate the number of pathogenic variants, leading 
to the misclassification of benign variants as pathogenic 
and exhibiting low specificity, which results in a high 
false positive rate. The small sample size of the benign 
variants (N = 5) and the tendency to overestimate patho-
genicity may have contributed to the specificity being 0.

In contrast, three methods (FATHMM-XF, GenoCan-
yon, and VEST4) showed sensitivity ranging from 0.0622 
to 0.8592, while specificity ranged from 0.75 to 1. These 
methods performed contrary to the trend observed in 
missense and start-lost variant datasets, overestimating 
the number of benign variants and leading to poor iden-
tification of pathogenic variants due to high false nega-
tive rates, particularly in FATHMM-XF.

Discussion
Computational pathogenicity prediction methods have 
been widely used to distinguish pathogenic from benign 
variants. Selecting the appropriate methods is crucial for 
prioritizing candidate variants in human disease. In this 
study, the performance of 28 pathogenicity prediction 
methods was evaluated using ten metrics, focusing on 
rare variants and various AF ranges, while examining the 
characteristics of these methods.

Most prediction methods were trained on known 
pathogenic and benign variants, which are sourced from 
public databases. However, using overlapping variants in 
both training and evaluation can result in inflated perfor-
mance metrics [12]. To minimize this bias and ensure a 
fair evaluation, the study employed methods published 
until 2022 and used ClinVar variants submitted after 2021 
as the benchmark dataset. This approach was designed to 
prevent overlap with training data and support an unbi-
ased performance assessment.

The nonsynonymous SNVs (nsSNVs), which alter 
amino acids in coding regions, include missense, start-
lost, stop-gain, and stop-lost variants. However, most 
prediction methods focused only on the missense and 
start_lost variants while excluding stop_gained and 
stop_lost variants. Methods based on sequence homol-
ogy using protein sequences, such as SIFT, PolyPhen2, 
MutationAssessor, PrimateAI, gMVP, and others, may 
be limited in evaluating variants like stop-gain or stop-
lost, since stop codons are not represented in amino acid 
sequences. Additionally, using prediction scores from 
methods that were developed to assess only certain vari-
ant types as features may limit the applicability of the 
model, since prediction scores for other variant types are 
unavailable. The missing rate represents the proportion 
of variants for which prediction scores are unavailable. 
Because most prediction methods did not cover stop 
codon related variants, which represent a large portion of 
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this dataset, the overall missing rate was high. Even when 
only missense variants were considered, most methods 
had a missing rate of approximately 10%. These missing 
rates are due primarily to differences in the annotation 
information of proteins or transcripts referenced by each 
method and by whether the features required for each 
method were available for a given variant.

In the evaluation of rare variants, MetaRNN and Clin-
Pred achieved the highest discriminative power across 
all performances. These methods incorporated only con-
servations, other prediction scores, and AFs as features. 
MetaRNN employed a deep learning algorithm, specifi-
cally a recurrent neural network (RNN). However, meth-
ods such as gMVP and PrimateAI, which also utilized 
deep learning-based algorithms, demonstrated poorer 
performance. This suggests that the effectiveness of deep 
learning approaches may vary depending on the model 
architecture and the types of features in the training data. 
ClinPred employed a random forest (RF), which is a tree-
based algorithm. Additionally, methods using tree-based 
algorithms, such as MutPred, REVEL, VARITY (ER, R), 
and VEST4, also demonstrated relatively good perfor-
mance. Additionally, methods that trained the dataset by 
filtering for rare variants or using AF as features gener-
ally performed well. Probabilistic-based methods, such 
as SIFT and PolyPhen2, which were commonly used as 
features in other methods, generally showed poor perfor-
mance, both on the rare variant dataset and on the entire 
dataset.

Most prediction methods tended to exhibit higher 
sensitivities than specificities, suggesting that some pre-
dicted pathogenic variants are actually benign. This dis-
crepancy was more pronounced in methods that did not 
incorporate other prediction scores as features. While 
other prediction scores are useful features for improving 
performance, they seem to have limitations in expanding 
to different variant types and addressing the missing rate. 
Therefore, it is necessary to discover diverse biological 
features that can be used instead of prediction scores to 
enhance generalizability.

Most methods showed performance differences across 
AF ranges, particularly in specificity. Specificity tended to 
decline with decreasing AF in methods trained on AF-fil-
tered datasets or those that incorporated AF as a feature. 
In contrast, probabilistic-based methods that did not use 
AF information exhibited a U-shaped pattern, with speci-
ficity decreasing and then increasing as AF decreased. 
And these methods generally showed lower overall per-
formance compared to models that incorporated AF 
information.

In real datasets, such as the benchmark dataset, patho-
genic variants are predominantly concentrated in the 
rare AF range near zero, and benign variants are distrib-
uted not only near an AF of 1 but also across various AF 

ranges. Therefore, relying only on common variants as 
benign may lead to biased predictions and reduced speci-
ficity. Additionally, an imbalance between rare benign 
and pathogenic variants in the training dataset may con-
tribute to the reduced specificity observed in the low-AF 
ranges. Rather than training by filtering variants based 
on AF, it may be more beneficial to include variants that 
allow for a balanced distribution of both pathogenic and 
benign variants within each AF range. Such an approach 
can better capture the real-world distribution of variants 
and enhance the robustness of predictors across various 
AF ranges. And proxy-labeled benign datasets gener-
ated by filtering large population databases such as ExAC 
and gnomAD based on AF thresholds may contain noise, 
as these variants are not confirmed to be truly benign. 
Methods such as M-CAP, FATHMM-XF, and REVEL, 
which used filtering with AF < 1% to select benign vari-
ants, may have included potentially pathogenic variants, 
thereby introducing noise that can reduce specificity. 
Therefore, using curated datasets with clinically validated 
labels for training may help reduce noise and potentially 
improve the reliability of model performance. Adjusting 
thresholds depending on data conditions for specific AF 
ranges has the potential to help maintain sensitivity while 
mitigating the loss of specificity.

As rare variants in coding regions have been increas-
ingly discovered and recognized for their clinical signifi-
cance, various pathogenicity prediction methods were 
developed. However, there remains a need for improved 
methods to enhance pathogenicity prediction and facili-
tate the identification of disease-associated variants. 
These results provide insights into the strengths and 
limitations of each method in predicting the pathoge-
nicity of rare variants, which can guide future improve-
ments in predictive models. Furthermore, while AF and 
existing prediction scores offer valuable information for 
prediction methods, the identification of novel biological 
features is essential to overcome current limitations and 
further improve predictive performance.

Conclusions
With the advancement of NGS technology, many SNVs 
have been discovered, leading to the development of vari-
ous methods for distinguishing pathogenic from benign 
variants. However, the performance evaluation of these 
methods on rare variants has not yet been conducted. 
This study evaluated the performance of 28 pathoge-
nicity prediction methods on rare variants of coding 
regions and various AF ranges across ten metrics. Most 
prediction methods covered the missense and start_lost 
variants of nsSNVs and had missing prediction scores. 
MetaRNN and ClinPred, which incorporated conserva-
tion, other prediction scores, and AFs as features, dem-
onstrated the highest predictive power on rare variants 
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and under various AF conditions. For most methods, the 
specificity tended to be lower than the sensitivity, and 
performance metrics decreased as AF decreased, with 
specificity being particularly affected. Overestimated 
sensitivity can lead to an increased number of false posi-
tives, raising reliability concerns in clinical applications. 
These findings provide insights into the strengths and 
limitations of each method in predicting the pathogenic-
ity of rare variants, which can guide future improvements 
in predictive models.
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