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Abstract

Motivation. Multivariate analyses are advantageous for the simultaneous testing of the separate and combined effects of many

variables and of their interactions. In factorial designs with many factors and/or levels, however, sufficient replication is often pro-

hibitively costly. Furthermore, complicated statements are often required for the biological interpretation of the higher-order inter-

actions determined by standard statistical techniques like analysis of variance.

Results. Because we are usually interested in finding factor-specific effects or their interactions, we assumed that the observed

expression profile of a gene is a manifestation of an underlying factor-specific generative pattern (FSGP) combined with noise. Thus,

a genetic algorithm was created to find the nearest FSGP for each expression profile. We then measured the distance between each

profile and the corresponding nearest FSGP. Permutation testing for the distance measures successfully identified those genes with

statistically significant profiles, thus yielding straightforward biological interpretations. Association networks of genes, drugs, and

cell lines were created as tripartite graphs, representing significant and interpretable relations, by using a microarray experiment of

gastric-cancer cell lines with a factorial design and no replication. The proposed method may benefit the combined analysis of het-

erogeneous expression data from the growing public repositories.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Factorial designs have advantages in efficiency,

power, and in the elegance of statistical testing [26].
Generalizations based on factorial experiments are

broader than those obtained from single variable exper-

iments, as the effect of treatment is studied across differ-

ent conditions.
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Replication is a cornerstone of scientific research. The

importance of replication in microarray experiments has

been highlighted as a means of increasing the precision

of estimated quantities and of providing information
about the uncertainties of estimates [16,19]. However,

we often have to deal with poorly replicated experimen-

tal datasets because of unwanted limitations in resource,

methodology, or knowledge.

DNA microarrays measure thousands of gene expres-

sion levels in a massively parallel way such that even a

single classical two-dye technique microarray

experiment may result in a reasonable estimation of sta-
tistical significance and experimental quality control.
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For example, the reliable identification of differentially

expressed genes in a single-slide experiment has been

demonstrated by a method choosing cut-offs in the dis-

tribution of ratios [7] and by a hierarchical Bayesian

model based on posterior odds change [22]. Methods

that determine differentially expressed genes using only
a few replicates have also been introduced [1,34].

Previous methods relying on comparisons of two or

more levels of a single factor, however, do not apply

to multivariate cases. One needs a method flexible en-

ough to allow for complex experimental design. Analysis

of variance (ANOVA) is standard technique for analyz-

ing such multivariate datasets.

One experimental dilemma, however, concerns the
determination of the optimal number of replicates. In

a factorial design with many factors and/or levels, repli-

cation may often be prohibitively costly. For example, in

a 10 by 10, 2-factor 10-level experimental design, 100

microarray slides are needed with no replication. Even

simple triplication of the experiment, which may not

be sufficient, requires 200 more microarray slides.

Clearly, the disadvantages of such replication, given lim-
ited resources, is to lose the opportunity to systemati-

cally explore the high-dimensional problem space

enriched by many interesting factors that we want to

measure. For example, a multivariate analysis technique

requiring no replication may permit one to systemati-

cally explore 200 more factor levels (i.e., 10 · 20) using

a 10 by 30 experimental design with no replication.

Biological interpretability, its clarity and relevance
may be the most desired properties of a good micro-

array data analysis technique. However, biological

interpretability of the results of standard ANOVA-type

statistical methods may not be guaranteed in a facto-

rial design with many factors and levels because of

the large number of statistically significant higher-order

interactions. As correctly pointed out by Pavlidis and

Noble [24], when more than two levels are present
for variables, ANOVA might indicate a significant ef-

fect of a factor on expression, but does not determine

which factor levels show different expression from

any others. Moreover, describing statistically signifi-

cant higher-order interactions in a multifactorial exper-

iment typically requires an extremely complicated

statement.

With the growing number of microarray standards
such as MIAME (Minimum Information About a

Microarray Experiment, [4]) and MAGE-ML (Micro-

array Gene Expression Markup Language, [32]), and

of public expression-data repositories such as ArrayEx-

press [5] and GEO [9], we clearly require more powerful

analytical methods to discover the significant and inter-

pretable patterns from large multifactorial microarray

data with poor or insufficient replicates, to facilitate
the mining of a huge collection of microarray data from

heterogeneous sources.
In this paper, we propose a procedure for identifying

genes that show both substantive and interpretable

gene-expression patterns in multifactorial microarray

experiments with no or poor replication. The proposed

method identifies the optimal combination of biological

factor(s) explaining the expression profile of the differen-
tially expressed genes. In effect, we test all (biologically)

interpretable patterns from a multifactorial design, se-

lect the nearest pattern for each expression profile, and

evaluate statistical significance.

First, we define a factor-specific generative pattern

(FSGP, see method), which is readily interpretable,

and which represents all interpretable patterns enumer-

ated from the particular design involved. We define
the distance between a gene expression profile and

FSGP, find the FSGP nearest each gene�s expression

profile, and measure the distance between each profile

and the corresponding nearest FSGP. A Genetic Algo-

rithm (GA) is created to determine the FSGP nearest

a gene expression profile. Finally, we determine the

FDR (false discovery rate)-corrected statistical signifi-

cance of the distance by permutation testing.
The proposed procedure is illustrated using 54 cDNA

microarray experiments with two factors (i.e., six che-

motherapeutic agents and nine gastric cancer cell lines)

where the cancer cell lines are labeled before and after

a chemo-drug treatment. The procedure demonstrates

how to reliably identify genes with drug and/or cancer-

specific expression patterns, yielding straightforward

biological interpretations, for multifactorial microarray
data with poor replication.

This paper is organized as follows. In Section 2, we

define FSGP and describe a GA implementation de-

signed to find the FSGP nearest a given expression pro-

file. Section 3.1 describes data preprocessing steps.

Section 3.2 describes our permutation scheme for the

strong control of type-I error. Genes identified by the

proposed method are listed and investigated in relation
to the associated drugs and cell lines. The association

networks of the genes, drugs, and cell lines are recon-

structed as tripartite graphs in Section 3.3, and this is

followed by a discussion in Section 4.
2. Methods

2.1. Factor-specific generative patterns and pattern

distance

Suppose that there are N factors denoted by n

(=1, . . . ,N) and K levels for each factor denoted by kn
(=1n, . . . ,Kn), a typical experimental design for the mul-

tifactorial analysis involves �Kn microarrays.

An expression profile (or a pattern) of a gene can be
represented by an N-dimensional matrix with �Kn cells
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denoted Ck1 ; . . . ; kN . A simple two-dimensional case is

illustrated in Fig. 1 (N = 2, K1 = 6, and K2 = 9).

Let fn be a particular level of factor n such that

fn 2 {1n, 2n, . . . ,Kn}. A pattern is defined to be specific

to fn if all Ck1;...;kn�1;fn;knþ1;...;kN are significantly changed.

A factor-specific generative pattern, FSGP (ki,kj, . . .),
is defined as a pattern that is specific to all ki,kj, . . . and
not to others. Therefore, there are in general 2

P
Kn

FSGPs for a microarray experiment with �Kn slides.

As defined above, an expression pattern in a multifac-

torial design is generally defined as ‘‘specific’’ to one or

more factors if the expression levels of all cells related to

the factor(s) are all significantly changed. For example,

the expression pattern in Fig. 1A is specific to the fac-
tors, t1, t2, t3, and t4, but not to others. Fig. 1C profile

is specific to c2 and �nearly� specific to c6 and t3. Notice

that we use the term, �factor,� although �level� may be a

more precise term for multifactor design. We use the

term for convenience and to prevent possible confusion

between factor �level� and gene-expression �level.�
An FSGP is an expression pattern specific to a (com-

bination of) factor(s) (or more precisely, factor level(s)).
We view an observed expression profile as a manifesta-

tion of the underlying FSGP combined with noise. For

example, we view that the expression profile in Fig. 1B

is likely to be generated by the t3-specific generative pat-

tern, FSGP (t3), but has a pattern distance 1 from

FSGP (t3) because of intervening noise. The FSGPs de-

noted by FSGP (ai,bj, . . .) in Fig. 1 can also be repre-

sented by a list of bit patterns, as such the pattern in
Fig. 1C can be denoted as FSGP ((0,0,1,0,0,0),

(0,1,0,0,0,1,0,0,0)). Accordingly, there are in general
Fig. 1. Gene expression profiles with measured pattern distances with

respect to the nearest factor-specific generative patterns. (A) t1, t2, t3, t4-

specific generative pattern (d = 0), (B) t3-specific generative pattern

(d = 1), (C) t3,c2,c6-specific generative pattern (d = 3), and (D) non-

specific pattern or non-pattern (d = 7). Pattern distance in the binary

space is simply the number of mismatches (i.e., the Hamming

distance). ci, the ith cell-line; ti, the ith anti-cancer drug.
2
P

Kn FSGPs for a microarray experiment with �Kn

slides.

We define the pattern distance of an expression pro-

file as the distance between the profile and the nearest

FSGP. Thus, to measure the pattern distance of an

expression profile, one first has to find its nearest FSGP.
Section 2.2 demonstrates how to find the FSGP nearest

a profile by implementing a GA. For the purpose of

illustration, we first demonstrate the pattern distance

in binary space and then generalize it.

The pattern distance is defined as (a kind of) Ham-

ming distance between an expression profile and its

nearest FSGP. In the binary space, where the expression

level is dichotomized to zero (i.e., non-changed and de-
picted as blank cells) or one (i.e., significantly changed

and depicted as dark cells), pattern distance simply

equals the number of mismatches (Fig. 1). Therefore,

the pattern distance between a two-factor profile Cij

and the nearest FSGP, C0
ij, equals

P
jCij � C0

ijj. More

generally, the N-dimensional pattern distance of

Ck1;...;kN equals
P

jCk1;...;kN � C0
k1;...;kN

j.
Fig. 1A demonstrates a case in which the nearest

FSGP perfectly matches the observed expression profile,

as such the pattern distance equals to zero. Fig. 1B

exhibits an expression profile with one mismatch

(FSGP (t3),d = 1) and (C) one with three mismatches

(FSGP (t3, c2, c6), d = 3). Moreover, a profile�s nearest

FSGP can be the null-pattern, FSGP (), as shown in

Fig. 1D. Because we are interested in search for distinct

patterns rather than a null-pattern, the distributions of
pattern distances from the null-pattern is estimated sep-

arately and treated in the manner described in Section

3.2. The significance of the nearest FSGP obtained can

be determined reliably by using the permutation test de-

scribed in Section 3.2.

Generalization to non-binary space can easily be

achieved by setting the range of expression levels in cells.

For example, if the range of the expression level is .0–1.0
and the dark cell represents .9 and the blank cell .1 in

Fig. 1B, then, because the FSGP (t3) should ideally have

ideal value of 1.0 for the cells in the third row (t3) and 0

for those in the extra rows, the pattern distance of Fig.

1B profile can be calculated as follows: {|1.0 � .9|

* 8 + |1.0 � .1| * 1} + {|.0 � .1| * (9(columns) *5(rows))}

= .8 + .9 + 4.5 = 6.2. GAs for both binary and non-bi-

nary conditions are available at http://www.snubi.org/
software/FSGP/.

2.2. Genetic algorithm used to find the nearest generative

pattern

The GA is a non-deterministic optimization proce-

dure based on a massively parallel search [14], where

each potential solution to a problem is represented in
the form of a string (or a chromosome) with encoded

parameters (or attributes). A series of random strings

http://www.snubi.org/software/FSGP/
http://www.snubi.org/software/FSGP/
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(or population) are initialized to represent data points in

solution space and then evolve towards fitness by muta-

tion, mating, and crossover. The selection process ap-

plies a fitness function to measure the goodness of fit

to select the next generation population. The Boltzmann

probability distribution may also be applied to affect
acceptance or rejection based on an analogy to the sto-

chastic free energy optimization.

To find the nearest FSGP of an observed gene expres-

sion profile, a simple GA was created using a classical

binary fixed-string representation [11] for factor-specific

effects. Factors (N) were represented as chromosomes

whose lengths equaled the corresponding number of lev-

els (Kn). For example, the nearest FSGP for the Fig. 1B
profile is represented as (0,0,1,0,0,0) in chromosome 1

and as (0,0,0,0,0,0,0,0,0) in chromosome 2, represent-

ing drug- and cell-line specific effects, respectively. The

nearest FSGP for the Fig. 1C profile is represented as

((0,0,1,0,0,0),(0,1,0,0,0,1,0,0,0)). Therefore, the solu-

tion space has the size of 26+9 FSGPs. The chromosomal

representation can easily be scaled up to more than two

factors and to many levels with 2
P

Kn FSGPs. Both the
binary and the non-binary (i.e., continuous-value) pat-

tern distances described in Section 2.1 can be applied

as measures of goodness of fit. Fairly standard imple-

mentation of GA with mutation, mating and crossover

successfully identified the nearest FSGP for each expres-

sion profile used. A GA implementation for user evalu-

ation with adjustable parameters written in the Python

programming language is available at http://www.
snubi.org/software/FSGP/.
3. Results

3.1. Data set and normalization

A data set from gastric-cancer research was studied.
The primary goal of the study was to explore the poten-

tial gene-drug interactions in a search for novel drug tar-

gets. DNA microarray slides were prepared containing

2400 fully annotated genes. Six chemotherapeutic agents

were administered to nine gastric-cancer cell lines,

resulting in 54 experiments. A classical two-dye tech-

nique with Cy5 and Cy3 fluorescent dyes was applied be-

fore (Cy3) and after (Cy5) anti-cancer drug treatment.
Variance stabilizing normalization by Huber et al.

[15] was applied with the �vsn� package in Bioconductor

using the R statistical package. After performing inten-

sity-dependent global LOWESS regression, spatial and

intensity-dependent effects were managed by pin-group

LOWESS normalization, and this was followed by

applying the approach described by Yang et al. [35].

For the purpose of illustration, we assigned dummy
binary values to the data by applying six cut-off levels

(i.e., 5, 10, 15, 20, 25, and 30%) and three-direction
groups (i.e., �up,� �down,� or �up-or-down� regulated

groups). For example, we assigned 1�s to the highest

5% and 0�s to the others when we applied a 5% cut-off

level. Overall, we created 18 dichotomized data sets

(i.e., six cutoffs by three directions), which described

the expression profiles of 2400 genes under 54
conditions.

3.2. Permutation test and false discovery rate

To perform formal statistical testing, we wanted to

estimate the null distribution(s) for the proposed statis-

tic, the pattern distance defined in Section 2.1. When

scoring thousands of gene expression profiles simulta-
neously, we also had to deal with the problem of ‘‘multi-

ple hypothesis testing.’’ Two types of error

measurements are commonly used in multiple-hypothe-

sis testing: FWER (family wise error rate) and FDR

(false discovery rate). FWER offers a very strict error

measure of at least one false positive result among all

significant hypotheses. FDR [2,33] is defined as the ex-

pected proportion of false positive results among all re-
jected hypotheses multiplied by the probability of

making at least one rejection. FDR offers a much less

strict criterion, which hence leads to an increase in statis-

tical power. Genes with pattern distances greater than a

threshold are considered potentially significant. The per-

centage of such genes identified by chance is the false

discovery rate (FDR). We applied permutation test that

does not require any distributional assumptions.
We ran ca. five million permutations of the 54 sample

labels in the present study. It is possible to reduce the

number of permutations by testing for all possible cate-

gories. For example, the permutation results are the

same expression profiles having the same number of sig-

nificant cells, i.e., the cells with 1s in the matrix. Thus,

there are only 55 conditions (i.e., 0–54 1�s in the six-

by-nine matrix) requiring permutation. By permuting
the 54 sample labels 105 times for the 55 groups and

by applying GA to find the nearest FSGP for each gene,

we ran the GA implementation over ca. 3 days using 18-

nodes of a Linux cluster system. It should be noted that

the illustration used in our study could be extended to

more general cases with unbalanced factors and levels.

Users may flexibly extend the proposed method for dif-

ferent data sets, and the number of testing permutations
can be greatly reduced by excluding the null-pattern

groups.

To estimate the FDR, the proportion of falsely signif-

icant expression profiles corresponding to the expression

profile of each gene were computed by counting the num-

ber of permuted profiles showing equal or smaller pattern

distances (to the corresponding nearest FSGP) than that

of the observed (i.e., non-permuted) profile. The thresh-
old can be adjusted to identify smaller or larger sets of

profiles, and the FDRs are calculated for each set (Fig. 2).

http://www.snubi.org/software/FSGP/
http://www.snubi.org/software/FSGP/


Fig. 4. Estimated FDRs across six cut-off and at all pattern-distance

levels in the (A) �up-or-down,� (B) �up,� and (C) �down� regulated

groups.

Fig. 2. Distribution of estimated FDR (false discovery rate). By

permuting the sample labels, estimated distributions of FDRs were

obtained across all levels of pattern distances and different six cut-off

levels in the �up-or-down� regulated group. The other two groups

showed the same pattern (data not shown).
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The FDR at each level of pattern distance was esti-

mated by averaging the number of falsely significant

expression profiles at each pattern distance level.

Fig. 2 shows the estimated FDRs at all levels of pattern

distance for six different cutoffs in the �up-or-down� reg-
ulated group. The other two directional groups exhib-

ited the same pattern (data not shown). For the

purpose of illustration, the frequency and FDR (±SD)
plots are overlapped with those of the �up-or-down� reg-
ulated group at six cutoffs in Fig. 3. The other two direc-

tional groups showed the same pattern (data not

shown). Fig. 4 demonstrates the distributions of the esti-

mated FDRs at all pattern-distance levels across six cut-

offs in the three directional groups. It seems that about

5% of the FDR can be obtained by applying a threshold

of pattern distance, d = 5, for the six cutoffs.

3.3. Genes showing drug and cell-line specific patterns

For illustration purposes, the (two tailed) �up-or-
down� regulated group at the 10% cut-off level, which

may be the most biologically relevant, was selected for

further investigation. Thirty-seven genes were deter-
Fig. 3. Estimated FDRs (mean ± SD). Estimated FDRs of the �up-or-
down� regulated group are overlapped by the corresponding frequency

histograms at all levels of pattern distance and at six cut-off levels, 5,

10, 15, 20, 25, and 30%.
mined to be significant after applying strict control of

the type-I error at FDR < 0.025, according to the pro-

posed method (Table 1). We identified 17 more genes

at FDR < 0.05.
It is worth noting that the proposed method reduces

the effect of higher-order interactions from a multiplica-

tive (�Kn, i.e., an effect of N factors on an expression le-

vel) down to an additive (
P

Kn, i.e., an effect of a factor

on an expression profile) complexity, given the assump-

tion that the factors independently affect gene expression

level. By doing so, it greatly improves the interpretabil-

ity of the analysis by permitting us to reconstruct an
(N + 1)-partite-graph of the whole association network,

which is equivalent to the set of dyadic associations

identified as in Table 1.

k-Partite graph is a set of graph vertices decomposed

into k disjoint sets such that no N graph vertices within

the same set are adjacent. One can easily construct a tri-

partite graph by simply combining the dyadic associa-

tions among the three types of vertices, i.e., genes,
drugs, and cell lines, described in Table 1.

Fig. 5 exhibits the tripartite-graph representation of

the association network for the significant 54 genes, six

drugs, and nine cell lines (FDR < 0.05) identified by

the proposed method. Genes and associations having

FDR < 0.025 are represented by bold characters and

bold lines and those having FDR < 0.05 by italic charac-

ters and thin lines. Among the 37 genes at FDR < 0.05,
12 genes demonstrated a single drug-specific effect, 20

genes a single cell-line effect, three genes a dual cell-line

effect, and two genes showed both drug and cell-line ef-

fects (Table 1 and Fig. 5).

Doxorubicin, an anthracycline antibiotic produced

by the fungus Streptomyces peucetius, was found to spe-

cifically effect the MHC class I HLA-C-a-2 chain, the

HLA class I locus C heavy chain, the immunoglobulin
j light chain and the interferon-inducible protein

(IFI616, G1P3). Interestingly, all genes related to the

anthracycline antibiotic were immune-response-related

genes. Moreover, interferon a has been shown to modify

the anti-tumor effect of doxorubicin and reduce bladder-



Table 1

List of genes showing cancer and/or drug-specific effects and the pattern distance, FDR (false discovery rate), and the number of cells significantly

changed for each gene expression profile

Gene description d Noa (=n) Drug effect Cell-line effect

Nuclear aconitase mRNA, encoding mitochondrial 3 (6) CPT-11

Transcription factor ZFM1 isoform B3. SF1: splicing factor 1 3 (3) SNU601

a-2-Macroglobulin 4 (6) SNU601

Immunoglobulin j light chain 4 (7) Doxorubicin

Ferritin heavy chain 4 (6) SNU1

Serine protease (Omi). PRSS25, protease, serine, 25 4 (6) SNU620

Cytochrome b5. NQO1: NAD(P)H dehydrogenase, quinone 1 5 (7) AGS

DNA polymerase epsilon, catalytic polype 5 (7) SNU216

MAPK6: mitogen activated PK 6. (ERK3 protein kinase.) 5 (6) Cisplatin

Farnesyltransferase a-subunit 5 (7) M1

RNA for c-fes. FES: felin sarcoma oncogene 5 (7) M1

X-box binding protein-1 (XBP-1) 5 (7) AGS

FABP5: Fatty acid binding protein homologue (psoriasis associated) 5 (7) M74

GDNF family receptor a 2 (GFRA2) 5 (7) M74

Zinc finger protein FPM315 (ZNF263) 5 (7) SNU668

Putative src-like adapter protein (SLAP) 5 (7) SNU620

Pyrroline 5-carboxylate reductase 6 (12) AGS, SNU1

Rohu mRNA for rhodanese (HSROHU) 6 (9) Cisplatin

mRNA for APRIL protein. Acidic protein rich in leucines 6 (8) AGS

Glutathione peroxidase (GPX1) 6 (8) AGS

mRNA for P1cdc47. MCM7 minichromosome maintenance deficient 7 6 (8) SNU601

(clone PWHCLC2-8) cardiac myosin light chain 2 6 (8) SNU668

rhoGAP protein 6 (8) M74

Human MHC class I HLA-C-a-2 chain and alternative mRNA 6 (7) Doxorubicin

UBE3A:ubiquitin prot. Ligase E3A (HPV E6-asso prot., Angelman synd) 6 (7) Taxol

KIAA0406 6 (7) Taxol

mRNA for Pr22 protein. STMN1: stethmin 1/onprotein 18 6 (8) SNU601

LAMA2: laminin, a 2 (merosin, congenital muscular dystrophy) M chain 7 (13) SNU620,SNU1

mRNA for KIAA0385 gene 7 (9) SNU620

Human mRNA for HLA class I locus C heavy chain 7 (8) Doxorubicin

Ras-related protein (Krev-1). RAP1A: RAP1A, member of RAS oncogene family 7 (8) Cisplatin

mRNA for KIAA0288 gene 7 (7) M74, SNU1

Myo-inositol monophosphatase 2 8 (11) CPT-11

SLC1A4: solute carrier family 1 (glutamate/neutral amino acid transporter), member 4 8 (12) Taxol, M1

SLC16A3: solute carrier family 16 (MCT3, Monocarboxylate transporters), member 3 9 (14) TSA, SNU601,SNU620

G1P3: interferon, a-inducible protein (cDNA, IFI616) 10 (15) Doxorubicin

CDC2: cell division cycle 2, G1 to S and G2 to M 10 (13) 5-FU

a Number of the cells showing significantly changed expression levels.
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cancer proliferation [23]. Doxorubicin damages DNA

by intercalating the anthracycline portion, chelating me-

tal ions, generating free radicals or by inhibiting DNA

topoisomerase II.

MAPK6, Rohu, and Rap1 showed cisplatin-specific

effects. The platinum drug, cisplatin, is a cell-cycle

non-specific anti-cancer drug, which binds to DNA

and causes the production of intrastrand cross-links
and DNA adduct formation. Cisplatin treatment acti-

vates multiple signal transduction pathways, which can

lead to several cellular responses, including cell cycle ar-

rest, DNA repair, survival or apoptosis. Moreover,

genotoxic stress induces multiple signal transduction

pathways, which include the MAP kinase pathways

[8,13,20,28]. The same pathways are also related to plat-

inum drug resistance [25]. Rohu mRNA for rhodanese
(mercaptopyruvate sulfurtransferase) catalyzes the

transfer of a sulfur ion to cyanide during cyanide degra-
dation. Platinum cyanide binds at the entrance of the ac-

tive site pocket, involving Arg-186 and Lys-249 of

rhodanese [21]. Although we were unable to find a re-

port on the interaction between cisplatin and Rap1,

the latter, a ras-related gene with transformation sup-

pressor activity, is closely associated with the MAP ki-

nase cascades [3,6,17,30,36].

Taxol (paclitaxel) binds to the tubulin heterodimer,
hence preventing microtubules from disassembling

and cells from dividing. A taxol-specific effect was

found in ubiquitin protein ligase E3A, KIAA0406,

and SLC1A4 (neutral amino acid transporter). An

inhibitor or ubiquitin-dependent multicatalytic protease

complex (proteasome) was shown to be cytotoxic to

human myeloid leukemia cell lines, and pre-treating

this inhibitor enhanced the cytotoxicities of taxol and
cisplatin [31]. Parkin, a protein–ubiquitin E3 ligase,

was found to be tightly bound to microtubules in



Fig. 5. Tripartite-graph representation of gene, drug, and cell-line

association networks. Factor-specific generative patterns significantly

associated to genes were determined and used for the reconstruction of

the tripartite-graph networks.
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taxol-mediated microtubule coassembly assays [27].

Although we could not find a report on the interaction

between SLC1A4 and taxol, multidrug transporters

have been suggested to be involved in chemotherapeu-

tic-drug resistance [10,12,29]. Moreover, TSA (Trichos-

tatin A) has been related to another transporter
protein, SLC16A3. Interestingly, both of these trans-

porters showed multiple drug-and-cancer-specific effects

(i.e., Taxol and M1 vs. TSA and SNU601 and

SNU620). KIAA0406 is a gene of unknown function.
5-Fluorouracil (5-FU) produced only one gene-spe-

cific effect on Cdc2 kinase. Cdc2 kinase forms a complex

with B-type cyclins, which are central regulators of the

progression from G2 to mitosis. Moreover, cyclin B lev-

els following the treatment of a HepG2 hepatic cancer

cell line with 5-FU or methotrexate were shown to be
down regulated, and this cyclin B down-regulation was

suggested as a means of regulating G2 arrest [18].
4. Discussion

We propose a method for identifying the optimal

combination of biological factor(s) explaining the
expression profile of the differentially expressed genes

in a microarray experiment. The method outperforms

when compared to typical multifactorial analysis such

as ANOVA in two ways: reducing the higher-order

interactions from a multiplicative to an additive com-

plexity and, more importantly, no replicates are

required.

Although sufficient replication is desirable whenever
possible, the replication of microarray experiments

may often be prohibitively costly. A balance must be

found between the increased number of replicates and

a reduction in the number of factors to be evaluated.

Moreover, with increasing standardization [4,32] and

growth of public repositories of expression data [5,9],

it becomes important that powerful methods are devel-

oped to identify useful patterns from among the huge
collections in heterogeneous expression databases.

In this study, genes specifically associated with drugs

and/or cancers were successfully identified. We as-

sumed that each observed expression profile was cre-

ated by the underlying FSGP and noise, and devised

a GA to determine the nearest FSGP to each expres-

sion profile and then measured the pattern distance

of the profile with respect to the nearest FSGP. Final-
ly, a statistical significance score was assigned using a

permutation test.

One challenge presented by experiment with cancer

cell-lines is that, because of cell-line heterogeneity, the

in vitro effects observed do not accurately reflect the in

vivo or clinical condition. The result of the proposed

method, when it suggests a drug-specific effect, implies

that the identified gene may consistently interact with
the drug across many different cell lines. Thus, the tech-

nique suggests a more robust generalizability with re-

spect to the cell-line heterogeneity such that it is more

likely that the identified gene may also interact with real

human cancer cells in vivo.

One property of the proposed method is that the

nearest expression profile pattern provides a straightfor-

ward biological interpretation. High-biological inter-
pretability becomes even more important when many

factors and/or analysis levels are involved, when the
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interpretation of higher-order interactions of factors can

be extremely complicated. The proposed method can be

viewed as a feature selection method augmented by sta-

tistical significance scoring. Extracted features may also

be easily added to the analysis. Here we applied (a kind

of) Hamming distance as a measure of pattern distance;
however, one may flexibly choose an alternative appro-

priate distance metric.

In the present study, for the purpose of illustration,

we applied a fairly standard GA with fixed chromo-

somal representation to explore the relatively small

26+9 FSGP search space. The actual implementation or

the performance of the GA itself is not the main issue

in the present study. Rather, one can apply the proposed
scheme of the present study of defining a pattern dis-

tance, devising a search algorithm to find the nearest

FSGP, and evaluating the statistical significance. Other

meta-heuristic methods like simulated annealing and

Tabu search may also be successfully applied.

Association networks among genes, drugs, and cell

lines were reconstructed from the identified FSGPs

and showed significant associations with the observed
gene expression profiles. The tripartite graphs in Fig. 5

can completely capture relevant multifactorial experi-

mental information. In general, using the proposed

method, the association networks of N factorial experi-

ments can be represented as (N + 1)-partite graphs.

In contrast to traditional statistical test like ANOVA,

which informs us of the statistical significance of a given

null hypothesis, the nearest generative pattern of an
expression profile informs us of the most likely underly-

ing FSGP of the profile. However, the proposed method

does not test all possible hypotheses. Rather it directly

finds the best explanatory model and tests the statistical

significance of the model using a permutation test.

Therefore, it should be noted that our result does not

necessarily exclude the statistical significances of

remaining hypotheses. For example, the second or the
third nearest generative pattern of an expression profile

may also be statistically significant given the same FDR

threshold. It is trivial to extend the method to test the

significances of all competing hypotheses. When we

search only for the nearest generative pattern, the prop-

er interpretation of the result is that the expression pro-

file of gene x in an experimental setting y can be �best�
explained by (the list of) factor(s), zn.

A microarray experiment can be regarded as a data-

driven method of massive hypothesis generation. For

each hypothesis generated, whether positive or negative,

we tried to find related publications. Although there are

more than one million publications in PubMed, a micro-

array experiment with a multifactorial design generally

addresses such a huge problem space (i.e., 157,286,

400 = 26+9�1 (factors) · 2400(genes) in the present
study) that it is literally impossible to find at least one

report corresponding to the associations tested. It
seemed that pre-genomic studies have explored the

problem space only sparsely.
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