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Objective: Elucidating genetic factors of complex diseases is one of the most important challenges in
biomedical research. Recently, a genetical genomics approach of mapping genotype to transcripts has
been used in complex disease analysis. This approach treats messenger ribonucleic acid (mRNA)
expression as a quantitative trait and identifies putative regulatory loci for the expression of an individual
gene. However, the single-gene approach could not detect single nucleotide polymorphisms (SNP’s)
associated with the concerted activity of multiple genes. Since complex diseases result from the
interactions of multiple genes, it is important to consider associations between genotype and multiple
gene expression.
Methods and materials: We developed the differential allelic co-expression (DACE) that identifies
regulatory loci that affect the inter-correlation structure of multiple genes or a gene set. We applied DACE
to two benchmark datasets: the normal human lymphoblastoid cell dataset and the glioblastoma dataset.
These datasets consist of both SNPs and mRNA expression profiles for each sample. When analyzing the
lymphoblastoid cell dataset, principal component analysis (PCA) was compared with the DACE test.
Results: While PCA identified associations found by single-gene analysis, the DACE test detected
associations not identified by the single-gene approach. Using the DACE test, seven putative regulatory
loci of immune-related pathways were identified in lymphoblastoid cells after controlling for family-
wise error rate. In the glioblastoma dataset, DACE identified 4582 SNPs associated with six pathways. In
231 of the 4582 SNPs, patient survival length was correlated significantly with the SNP genotype. This
finding suggests that our integrative approach may provide a biological explanation for the putative
relationship between sequence level variation and disease outcome, via expression of a functional
pathway.
Conclusion: The DACE test shows promise for finding regulatory relationships between a genomic locus
and sets of genes which may be related to disease outcome.

© 2010 Published by Elsevier B.V.

1. Background

newly introduced approach that treats messenger ribonucleic acid
(mRNA) expression of a gene as a quantitative trait. While

While many genomic data obtained by genome-wide associa-
tion studies (GWAS) and gene expression microarray studies have
been separately analyzed, researchers are now in need of
developing integrative genomic analysis approaches. Genetical
genomics, the study of the genetic basis of gene expression, is a
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traditional genetics has focused on identifying loci linked to (or
associated with) conventional traits such as Mendelian disease or
common disease, genetical genomics has focused on identifying
loci that regulate the mRNA expression of certain genes [1-3].
The general scheme in genetical genomics is quite similar to
that of common microarray single-gene analysis. For each gene, a
linkage or association test is performed on its expression level and
several genetic markers to detect loci that regulate the gene’s
mMRNA expression. The main assumption of the single-gene
approach is that genes are expressed independently [4]. The
complex functions of a living cell, however, are often carried out
through the concerted activity of related genes [5]. For example,
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genes that function in cell-signaling pathways act simultaneously
rather than independently. Furthermore, certain pathway struc-
tures, such as cascade reactions, make identifying the regulatory
elements of some of the pathway’s genes difficult. This is because
functional pathways consist of many sequential steps, and genes
located further down the cascade are likely to be less affected by
regulators that stimulate expression of pathway components at
the top of the cascade. The single-gene approach is therefore not
adequate to test genes when alterations in gene expression are
modest.

With the data produced by Morley et al. [2], we focused on
identifying regulatory loci for multiple genes, especially with
regard to functional pathways, rather than for a single-gene. To
this end, we applied two different approaches to the lympho-
blastoid data sets. First, we applied principal component
analysis (PCA), which has previously been used by Lan et al.
[6] and Ghazalpour et al. [7]. They used PCA to reduce the
dimension of the expression of multiple genes in a specific
pathway and regarded a principal component (PC) as represen-
tative. Genomic loci associated with the PC were deemed to be
regulatory loci of the pathway. Second, in our previous work [8],
we hypothesized that the regulator of a gene set may affect not
only the expression levels of the member genes but also the
degree of their inter-correlation. We developed a new approach,
the differential allelic co-expression (DACE) test, to identify
genetic regulators of co-expression of a gene set. We applied
both approaches to the data and compared the results. We also
applied the DACE test to the human glioblastoma data sets. In
the present study, we utilized a co-localizing strategy to identify
single nucleotide polymorphisms (SNP’s) associated with
survival times of glioblastoma patients to identify functional
pathways that connect sequence level variation with survival
phenotype. Our approach is based on a two-step process: first,
associations between SNPs and biological pathways are identi-
fied. Second, SNPs having a significant effect on survival times
are selected from the SNPs that were significant in the first step.
With our integrative approach, we identified not only the
putative SNPs associated with disease survival but also the
pathways providing biological explanation of the underlying
process of SNP-survival association.

2. Methods

2.1. Centre d’Etude du Polymorphisme Humain (CEPH) datasets
containing gene profiles

We selected gene expression and genotype data from the 56
independent individuals in the Genetic Analysis Workshop (GAW)
15 data set provided by Morley et al. [2]. We used genotype data of
2882 genome-wide SNPs and expression data of 8793 mRNA's
across 56 samples for this analysis. mRNA expression was
measured with Affymetrix Human Focus Arrays. We normalized
the raw microarray data with the robust multichip average (RMA),
comprising background adjustment, quantile normalization, and
probe summarization.

2.2. Glioblastoma datasets

SNP and mRNA expression datasets of glioblastoma were
downloaded from the Broad Institute website (www.broad.mi-
t.edu). We selected 34 samples that were used in both the SNP chip
and mRNA microarray experiments. The platforms of the SNP chip
and mRNA microarray were the Affymetrix 100K SNP chip and
U133A, respectively. In this analysis, any probes containing
missing values (absent calls) in SNP dataset were excluded. In
total, 52,885 SNP probes were used.

2.3. Mapping genes to pathways

We used pathway information to compile the gene set. These
data were obtained from publicly available pathway resources,
including KEGG [9], GenMAPP [10], and BioCarta (http://www.bio-
carta.com), for mapping genes to pathways. In the U133A platform,
probes were mapped to 468 pathways. Among the pathways, we
used 437 pathways having five or more probes.

2.4. SNP-pathway association analysis using principal component
analysis

Principal component analysis was used to summarize the
expression of multiple genes for the pathways. Since principal
component 1 (PC1) explains most of the variance in expression
levels within a pathway, PC1 for each pathway was extracted and
used as a quantitative trait in the association test. The procedure of
the association test was followed using simple linear regression.

2.5. SNP/pathway association analysis using the DACE test

We used the DACE test [8] to identify associations between a
given SNP and a given gene set. It tests for differences in the
structure of the correlation between multiple mRNA transcript
levels that are associated with a SNP’s genotype. Given a SNP,
samples are grouped according to their genotype. First, for samples
with the same genotype, we computed the Pearson correlation
coefficients between the expression levels of all pairs of transcripts
in a gene set. As the correlation coefficients are not normally
distributed, the procedure includes “Fisher’s z transformation”. To
test whether the SNP under study has significant effects on the
levels of correlation among those genes, it adopts the general
framework of a linear model.

2.6. SNP/single-gene association analysis

For comparison with set-wise approaches, we also tested the
association between a gene’s expression level and a SNP for all SNP/
gene pairs. Simple linear regression was used for the association
test. Expression values across 56 independent samples became the
response variable for each expression trait, and individual SNP
genotypes are the independent variables in the regression model.
We applied this association test to only two groups of genes that
were of specific interest. One group consisted of the members of six
significant pathways identified by PCA. The other group consisted
of members of seven significant pathways identified by DACE.

3. Results
3.1. SNP/pathway association test

Since principal component analysis (PCA) was conventionally
used for reducing the dimensions of multiple gene expression, we
applied both PCA and the DACE test (proposed in our previous
paper) [8], on the lymphoblastoid dataset to assess the relevance of
the two methodologies for identifying associations between SNPs
and pathways.

We first extracted the first principal component (PC1) from the
expression profiles of genes comprising a certain pathway. We
regarded PC1 as a quantitative trait and performed an association
test with each of the SNP markers. Six PC1s corresponding to six
pathways showed significant association with at least one SNP
after controlling for family-wise error rate (Table 1). For the
purpose of comparing the PCA approach to conventional single-
gene association analysis, we independently tested the association
between genome-wide SNPs and the genes comprising the six
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Table 1
Shared associations among pathways and major contributors.
Pathway?® Major contributor® SNP Source DB
Role of Parkin in the ubiquitin-proteasomal SNCA rs638113, rs1476049 BioCarta
Alkaloid biosynthesis II ABP1 1s638113, rs703612, rs1476049 KEGG
Histidine metabolism ABP1 rs638113, rs1476049 KEGG
Alpha-synuclein and Parkin-mediated SNCA rs638113, rs1478292, rs1472672, BioCarta
proteolysis in Parkinson’s disease ribosomal proteins 151476049, rs746101
Ribosomal proteins RPS4Y1 rs530629 GenMAPP
Translation factors EIF1AY 1530629 GenMAPP
2 Each pathway expression matrix reduces to principal component 1, which was used for the association test.
> Major contributor: a gene that gives the largest contribution to principal component 1.
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Fig. 1. Concordance of genome-wide association results between the first principal component of a pathway and its major contributor. (a) Principal components (PC1)
extracted from both the Alkaloid biosynthesis Il pathway and the ABP1 gene revealed evidence of association with the same SNP’s, rs638113 and rs1476049. (b) The PC1s of the
Translation factors pathway and the EIFIAY gene showed common association with the SNP rs530629.

significant pathways. Interestingly, some of the genes showed
exactly the same significant association with the SNPs that PC1s
showed. We found that these genes gave the largest contribution
to the each of the six PC1s (we refer to these genes as major
contributors). For instance, the PC1s of the Alkaloid biosynthesis Il
and Translation factors pathways showed almost the same P-value
distributions as those of two major contributors, ABP1 and EIF1AY,
respectively (Fig. 1).

Secondly, we applied the DACE test to the same data set. Since
RNA samples were extracted from lymphoblastoid cells for gene
expression data, we chose seven immune system-related path-
ways for further analysis (Table 2). We independently tested the
association between genome-wide SNPs and all genes comprising
the seven significant pathways for comparison. Unlike PCA, the
DACE test detected associations that were not identified by single-
gene association analysis. For example, we found that the
inflammatory response pathway showed significant evidence for
association with a SNP, rs1294028, by the DACE test (Fig. 2(b)). By
contrast, none of the 23 genes comprising this pathway showed

evidence of association with rs1294028 by single-gene association
analysis. A heatmap of the gene expression matrix of the
inflammatory response pathway supported this result. There is
no significant change in expression level among three genotype
groups when considering each gene independently (Fig. 2(c)).
There is, however, an obvious alteration in correlation structure
among genes in the pathway, and this observation demonstrated
that rs1294028 has significant association with the correlations
among the 23 genes (Fig. 2(d)). The rs1294028 polymorphism is
located exactly in the intron region of the splA/ryanodine receptor
domain and SOCS box containing 1 (SPSB1) gene (Fig. 2(a)).

3.2. Identifying SNP/pathway/disease associations

Among 23,110,745 SNP-pathway pairs, 4582 SNP-pathway
pairs were significant with Bonferroni’s adjusted P-value
(=2.16e—09). The 4582 pairs contained six different pathways,
including Aspirin Blocks Signaling pathway involved in platelet
activation, Eicosanoid metabolism, G-protein coupled receptors

Table 2

Pathways with significantly associated SNPs as indicated by the DACE test.
Pathway SNP P-value Corrected P-value Source DB
IFN alpha signaling rs1884910 7.77e-15 8.80e—09 BioCarta
Human Cytomegalovirus and MAP kinase rs2135047 4.48e—14 5.07e—08 BioCarta
IL22 soluble receptor signaling rs1889279 8.14e—-13 9.22e—-07 BioCarta
IL12 and Stat4 dependent signaling rs213006 6.01e—13 6.81e—07 BioCarta

rs1327532 7.18e—12 8.13e—-06

T cytotoxic cell surface molecules rs1414944 1.09e—-12 1.24e-06 BioCarta
Inflammatory response rs1294028 1.72e—12 1.95e-06 GenMAPP
TACI and BCMA stimulation of B cell immune responses 152222976 1.70e—-12 1.92e-06 BioCarta

" P-value adjusted by Bonferroni correction for multiple hypothesis testing.
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Fig. 2. Genome-wide DACE test results for the Inflammatory response pathway. (a) Physical map of rs129408 showing association with the Inflammatory response pathway
(from NCBI Gene View). The polymorphism is located exactly in intron 1 of a gene named SPRY domain-containing SOCS box protein (SSB-1). (b) Genome-wide negative log 10 of
P-value distribution for the Inflammatory response pathway. The horizontal red line is our threshold (P < 7.430e—12; Bonferroni corrected P < 0.00001) for evidence of
significant association. (c) Heatmap for the gene expression matrix. There is no significant change in expression level among the three groups when each gene is considered
independently. (d) Heatmaps for correlation matrices. The three heatmaps show significant changes in correlation tendencies of the Inflammatory response pathway for

genotype differences in a given SNP.
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Fig. 3. Co-localization of results from the SNP-pathway association and the SNP-
survival association. (a) Survival differences in patients with glioblastoma
according to the genotype of rs6661074. A statistical difference in overall
survival times across three genotypes was observed (P=6.99e—3 by ANOVA).
(b) Heatmaps of correlation matrices. There were also significant changes in
correlation patterns of the Peptide GPCRs pathway for genotype differences in SNP
rs6661074. (c) DACE test results on chromosome 1 for the Peptide GPCRs pathway.
The horizontal red line is our threshold (P = 2.16e—09) and the red dot shows DACE
results of rs6661074 (P = 1.34e—15). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

(GPCRs) class A rhodopsin-like, GPCRs other, Peptide GPCRs and
Tryptophan metabolism pathways. It is notable that the co-
expression pattern of the Peptide GPCRs pathway significantly
varied with 4566 SNPs. We then tested whether survival length
varied according to the significant SNPs’ genotypes. Since survival
length was the only supported information, instead of the
conventional log-rank test, we used ANOVA to compare survival
lengths between different genotypes for each SNP. The ANOVA test
of difference in survival length according to genotype identified
231 (of the 4582 previously identified SNPs) significant SNPs with
survival time (P < 0.05). When the P values from the DACE and
ANOVA tests were sorted, rs666107 was the first SNP ranked within
the top 100 in both tests (DACE P-value =1.34e—15, ANOVA
P-value = 6.99%e—3, Fig. 3). As the SNP/pathway association and
SNP/disease survival association can be integrated by an anchoring
common SNP, we describe the result as the ‘co-localizing
approach’. As shown in Fig. 3, both the intra-correlational structure
of the Peptide GPCR pathway and survival lengths among
glioblastoma patients varied significantly across the rs666107
genotypes.

4. Discussion and conclusion

In the analysis of the lymphoblastoid dataset, we compared two
genetical genetics approaches for identifying associations between
SNPs and pathways. The first approach was principal component
analysis. This approach was found to be insufficient because the
pattern of variation of each first principal component was biased
toward that of the specific gene with the largest contribution to
that component. To make up for the shortcomings not only of PCA
but also of conventional single-gene association analysis when
attempting to identify the regulatory loci of functionally related
genes, we also applied the DACE test. This test identified novel
associations between transcripts and SNPs. For example, none of
the 23 genes comprising the inflammatory response pathway
associated with rs1294028 by single-gene association analysis,
while a significant difference in the correlation structure of this
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pathway was seen in the results of the DACE test. Furthermore, we
identified a link between an underlying biological mechanism of
glioblastoma and its prognosis. For example, as shown in Fig. 3,
among glioblastoma patients, those with the GG genotype at
rs6661074 showed significantly lower intra-correlation among
genes involved in the Peptide GPCRs pathway, and also had better
survival. Therefore, we conclude that a single nucleotide change at
SNP rs666107 might create differential interactions of the pathway
and eventually result in changes in the survival time of
glioblastoma patients. Even though an association between
rs666107 and glioblastoma survival has not yet been reported,
the GPCRs pathway is already known to mediate the metastasis of
several malignant tumors and to play a role in supporting
glioblastoma cell survival and to promote their production [11].
Our results are the first to suggest a regulatory association between
rs666107 and the Peptide GPCRs pathway in glioblastoma. The
conventional approach of genetic association studies is to discover
associations between DNA-level variation (i.e., SNP) and pheno-
type. However, results stemming from this approach often suffered
from a lack of biological explanation. For example, it is hard to
explain the effect of SNPs located in introns or SNPs located in
intergenic regions (i.e., rs666107). In this regard, our integrative
analysis, using set-wise genetical genomics to identify SNP/
pathway associations, might provide more relevant explanations
than current genetic or genomic complex disease studies.
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