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ABSTRACT
Purpose Quantitative analytic methods are being increasingly used in postmarketing surveillance. However, currently existing methods
are limited to spontaneous reporting data and are inapplicable to hospital electronic medical record (EMR) data. The principal objectives of
this study were to propose a novel algorithm for detecting the signals of adverse drug reactions using EMR data focused on laboratory
abnormalities after treatment with medication, and to evaluate the potential use of this method as a signal detection tool.
Methods We developed an algorithm referred to as the Comparison on Extreme Laboratory Test results, which takes an extreme
representative value pair according to the types of laboratory abnormalities on the basis of each patient’s medication point. We used
10 years’ EMR data from a tertiary teaching hospital, containing 32 033 710 prescriptions and 115 241 147 laboratory tests for 530 829
individual patients. Ten drugs were selected randomly for analysis, and 51 laboratory values were matched. The sensitivity, specificity,
positive predictive value, and negative predictive value of the algorithm were calculated.
Results The mean number of detected laboratory abnormality signals for each drug was 27 (±7.5). The sensitivity, specificity, positive
predictive value, and negative predictive value of the algorithm were 64 – 100%, 22 – 76%, 22 – 75%, and 54 – 100%, respectively.
Conclusions The results of this study demonstrated that the Comparison on Extreme Laboratory Test results algorithm described herein
was extremely effective in detecting the signals characteristic of adverse drug reactions. This algorithm can be regarded as a useful signal
detection tool, which can be routinely applied to EMR data. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

Signal detection of adverse drug reaction (ADR) in
postmarketing surveillance (PMS) has predominantly
entailed observations and analyses of spontaneous
reports by expert clinical reviewers. Quantitative
methods are, however, being increasingly used for
analysis in such situations, primarily because large
clinical databases are capable of broader analyses even
than large groups of clinical reviewers.1 Representative
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analytic methods include relative reporting, propor-
tional reporting rate ratio, reporting odds ratio,
Bayesian Confidence Propagation Neural Network,
and Multi‐item Gamma‐Poisson‐Shrinker.1,2 The algo-
rithm generally referred to as “disproportionality
analysis (DA)” basically uses the ratio of observed
drug–event combinations and the drug–event combina-
tions expected by pure chance. DA‐based analytical
methods have come to be considered the best
quantitative screening methods for the detection of
unknown or rare ADRs, and are regarded as an effective
supplement to qualitative signal detection strategies.1

However, the use of spontaneous reports as a principal
data source for DA also raises some limitations of
the spontaneous reports themselves, including the



Figure 1. Comparison on Extreme Laboratory Test results algorithm. An
extreme value pair such as the minimum or maximum value depending on
the types of laboratory abnormalities was selected as a representative value
for each patient. If either the result of the paired t‐test or the McNemar’s
test is statistically significant (p< 0.05), the drug–laboratory abnormality
pair was regarded as a positive signal
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lack of denominator data of user populations and
drug exposure, as well as the issue of significant
underreporting.2–6 Additional thresholding for dis-
proportionality or unexpectedness notably requires
individual, and occasionally arbitrary, decisions.
Previous attempts have been made to use other

health care data for PMS, such as randomized clinical
trial data sets,7 claim databases,8,9 or electronic patient
records.5,10 The global quantity of clinical information
is rapidly increasing with increasing adoption of
electronic medical records (EMRs). The EMR data
have potential strengths, including sufficient sample
size, population basis, relative inexpensiveness, and
no possibility of recall or interviewer bias.11 Inpatient
EMR data, in particular, may potentially provide
accurate diagnoses, accurate laboratory and radiology
results, drug dosage and administration time, and
readily detectable events during hospitalization.11

However, because of the logical simplicity of DA,
losses in the rich clinical context of the raw data are
inevitable, even with full EMR data.
Drug effects are reflected to a considerable degree

in clinical laboratory results.12–14 Several pharmaco-
epidemiologic studies have linked clinical laboratory
tests and drug exposure in large databases.15–26

However, these studies have been, generally, manual
rather than automated processes, as they depend on
methods or systems that find individual cases that
satisfy predefined laboratory conditions.
No reports have yet been conducted to determine

whether or not an automated database‐driven ap-
proach, analyzing the drug–laboratory events of EMR
databases, might prove efficient in rapid ADR signal
identification. The primary objectives of this study
were to devise a novel algorithm for detecting ADR
signals using an EMR database focused on laboratory
abnormalities after treatment with medication, and to
evaluate the potential use of this method as a signal
detection tool.

METHODS

The novel Comparison on Extreme Laboratory Test
results algorithm

The basic objective of the Comparison on Extreme
Laboratory Test results (CERT) algorithm was to
select laboratory abnormalities among all the possible
laboratory results after the administration of medica-
tion during each patient’s hospitalization period. That
is, the abnormal laboratory values are used as a surro-
gate for an adverse drug event (ADE).
The CERT algorithm combines both (i) comparison

between extreme laboratory results prior to medication
Copyright © 2010 John Wiley & Sons, Ltd.
and after medication during hospitalization and (ii)
comparison between the counts of abnormal labora-
tory results prior to and after medication during
hospitalization (Figure 1). Therefore, the CERT algo-
rithm can be regarded as a quasi‐experimental method,
specifically a “one group pre–post test design”method.
Use of the same medication before admission was not
considered in the algorithm. The sequential results of a
repeated laboratory test of a patient over the duration of
his or her hospitalization were divided into laboratory
tests prior to and after the first administration of the
subject drug during hospitalization.
To select a representative laboratory value, the

extreme value (minimum or maximum) among mul-
tiple laboratory values was selected for each pre-
medication and postmedication laboratory test. The
minimum or maximum value was selected as the
extreme, according to the laboratory abnormality type.
For hyper‐type laboratory abnormalities such as
elevated liver enzyme, the maximum value pair was
selected. For hypo‐type laboratory abnormalities such
as neutropenia, the minimum value pair was selected.
When both increases and reductions in a laboratory
test were relevant to ADRs, such as prothrombin time,
both hyper‐ and hypo‐type laboratory abnormalities
were included.
Pharmacoepidemiology and Drug Safety, (2011)
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comparison on extreme laboratory test results
Two groups of the extreme laboratory results—“prior
to” and “after”medication were compared using a paired
t‐test for each drug set used. The same extreme pairs
were used to compare the differences in the counts of
abnormal laboratory test results prior to and after
medication, via McNemar’s test. Laboratory test results
that fell below or above the reference range were
regarded as abnormal results. When either the paired
t‐test or the McNemar’s test was significant at a confi-
dence interval of 95% (p < 0.05 ), the drug–laboratory
abnormality pair was assigned as a positive signal.

Data source

We used the inpatient EMR database of a tertiary
teaching hospital, Ajou University Hospital, in Korea.
Since its opening in 1994, the Ajou University
Hospital has expanded to accommodate 1030 patient
beds, as well as other facilities including 92 intensive
care units, 18 operating rooms, and state‐of‐the‐art
medical equipment. The hospital’s information system
allows for a patient’s history and physician’s notes to
be digitally recorded and instantaneously available via
our network to all patient departments, thus facilitat-
ing top quality medical service. All of the data were
deidentified in an effort to protect patients’ privacy
and confidentiality. All protocols of this study were
reviewed and approved by the Ajou University Hos-
pital institutional review board.
The study database included information for admis-

sion, discharge, drug prescription, and laboratory test
results from 1 January 2000 to 31 March 2010. The
database contained a total of 32 033 710 prescriptions
and 115 241 147 laboratory tests from 1011 055 hospi-
talizations for 530 829 individual patients (Figure 2A).

Selection of target drugs

Ten drugs were randomly chosen for analysis among the
1265 drugs used in the hospital. These included seven
non‐oncologic drugs (including ciprofloxacin, clopido-
grel, ketorolac, levofloxacin, ranitidine, rosuvastatin,
and valproic acid) and three oncologic drugs (etoposide,
fluorouracil, and methotrexate) (Figure 2B).

Selection of target laboratory results

To evaluate the algorithm, a great deal of accurate data
on ADRs will first be required. However, currently, no
proven gold standard exists with regard to ADRs. In
this study, previously identified and published known
ADEs were regarded and treated as a gold standard.
We retrieved the known ADEs of the 10 selected
drugs that could be relevant to laboratory abnormal-
ities using the 2010 UpToDate® Drug Information
Copyright © 2010 John Wiley & Sons, Ltd.
Database (UpToDate Inc., Waltham, MA, USA), or
UpToDate, as a reference literature source on 1 March
2010. It provides comprehensive lists of ADEs to
determine whether or not the detected laboratory
abnormalities had been previously published. How-
ever, ADEs are relevant to a variety of concepts:
disease, symptoms, signs, syndromes, laboratory
abnormalities, etc. ADEs are heterogeneous and non‐
explicit in nature. By way of contrast, the results of
CERT algorithm analysis are represented solely as
laboratory abnormalities. As they cannot be compared
directly, a mapping system is required to compare the
reported ADEs and detected laboratory abnormalities
to evaluate the CERT algorithm. Therefore, we
developed a mapping table linking known ADEs
and detected laboratory abnormalities, as follows. The
mapping table included 56 ADEs from UpToDate for
the 10 drugs, and the laboratory abnormalities
detected by the CERT algorithms were listed. The
primary mapping between them was conducted by a
surgical pathologist (R. W. Park). In the first round of
consensus, the primary mapping table was evaluated
independently by a hematologist (S. Y. Kang) and a
nephrologist (I. W. Park), and rated as “correct or
require minor modifications” or “require major
modifications.” After the first round of consensus, it
was modified by adopting each evaluator’s comments.
The second consensus round was conducted using a
modified table. If two evaluators continued to hold
different opinions after the second round, the three
physicians gathered to discuss the case and come to an
agreement. The degree of inter‐observer agreement
was excellent (κ= 0.95; p < 0.001) after any disagree-
ments were resolved by consensus. Connections with
discrepancy even after second consensus were
“anemia—total iron binding capacity increased” and
“granulocytopenia—lymphocyte increased.” The three
participating physicians agreed to eradicate these from
the mapping table, because of the ambiguous nature of
the relationship of the connections. Among the 101
laboratory tests available in the data, 41 laboratory
tests, all of which appear at least once in the ADR
mapping table described above, were selected for
evaluation. Consequently, from the 41 laboratory tests,
51 laboratory abnormalities were categorized by type
and selected as target laboratory results (Figure 2D
and Table 1).
Validation of Comparison on Extreme Laboratory
Test results algorithm

The known ADEs for 10 drugs in the mapping table
were adopted as the gold standards for the ADR of
Pharmacoepidemiology and Drug Safety, (2011)
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Figure 2. Validation of Comparison on Extreme Laboratory Test results (CERT) algorithm. (A) A postmarketing surveillance (PMS) data warehouse was
constructed from a 10‐year electronic medical record database of a tertiary teaching hospital. (B) A total of 510 unique drug–laboratory test pairs were
prepared. (C) CERT algorithm detected statistically significant signals. (D) Adverse drug reactions (ADRs), which could be represented as laboratory
abnormalities, for the selected 10 drugs were retrieved from the 2010 UpToDate Drug Information Database. A mapping table linking known ADRs to
corresponding laboratory abnormalities was created. (E) The drug–event pairs (A) were evaluated via the CERT algorithm (C). BUN, blood urea nitrogen
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each drug. The sensitivity, specificity, positive
predictive value (PPV), and negative predictive value
(NPV) of the CERT algorithm were calculated for the
drugs in the aggregate, as well as each drug indi-
vidually, as the formula shown in Figure 3. When we
calculate sensitivity and specificity, previously known
ADEs of a drug were compared with the ADEs
converted from the laboratory abnormalities detected
by CERT. For the calculation of PPV and NPV, lab-
oratory abnormalities detected by CERT were com-
pared with the laboratory abnormalities converted
from previously known ADEs. One ADE was con-
verted into one or more laboratory abnormalities and
vice versa (Supplementary Table 1).
We also compared the performance of the CERT

algorithm for non‐oncology drugs with its perfor-
mance for oncology drugs.

Software tools used

In implementing the CERT algorithm and EMR data
processing system, Eclipse 3.2.2 (IBM, Riverton, NJ,
USA) tools for JAVA programming and MS‐SQL
2000 (Microsoft, Redmond, WA, USA) were used as
a database management system. The R package (R
Development Core Team, Vienna, Austria) was
incorporated into the system for statistical analysis.
Copyright © 2010 John Wiley & Sons, Ltd.
RESULTS
The CERT algorithm requires patients who were
prescribed the target drug at least once and had
generated one or more target laboratory results prior
to and after the administration of the target drug
during the same hospitalization period in the study
database. There were 16 706 cases in which cipro-
floxacin was used, along with 19 188 cases of
clopidogrel, 82 273 cases of ketorolac, 9059 cases of
levofloxacin, 68 995 cases of ranitidine, 4811 cases
of rosuvastatin, 11 523 cases of valproic acid, 1466
cases of etoposide, 11 217 cases of fluorouracil, and
1576 cases of methotrexate (Table 2).
The matrix of the previously known and detected

laboratory abnormalities for 510 unique drug–laboratory
abnormality pairs was generated using CERT (Figure 4).
The CERT algorithm detected 269 signals for 10 drugs.
Pairs detected by CERT corresponded with previously
well‐known drug‐induced adverse events in a substan-
tial number of drug–ADE pairs. For instance, the
association between ciprofloxacin and acute liver failure
or serious liver injury has been widely established.27,28

The results of the CERT algorithm suggested an
association between ciprofloxacin and liver‐related
laboratory abnormalities. The liver‐related laboratory
Pharmacoepidemiology and Drug Safety, (2011)
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Table 1. Forty‐one laboratory tests and 51 laboratory abnormalities

Laboratory test name Laboratory test abnormality

Activated partial thromboplastin time Increased activated partial
thromboplastin time
Decreased activated partial
thromboplastin time

Alanine transaminase Increased alanine transaminase
Alkaline phosphatase Increased alkaline phosphatase
Ammonemia Increased ammonemia
Amylase Increased amylase
Aspartate transaminase Increased aspartate transaminase
Basophil Decreased basophil count
Blood urea nitrogen Increased blood urea nitrogen
Cholesterol Increased cholesterol
Creatine kinase Increased creatine kinase
Creatinine Increased creatinine
Direct bilirubin Increased direct bilirubin
Eosinophil Increased eosinophil count

Decreased eosinophil count
Fibrinogen Decreased fibrinogen
Free thyroxine Increased free thyroxine

Decreased free thyroxine
Gamma‐glutamyl transpeptidase Increased gamma‐glutamyl

transpeptidase
Glucose Increased glucose

Decreased glucose
Hematocrit Decreased hematocrit
Hemoglobin Increased hemoglobin

Decreased hemoglobin
Lactate dehydrogenase Increased lactate dehydrogenase
Low‐density lipoprotein cholesterol Increased low‐density lipoprotein

cholesterol
Lipase Increased lipase
Lymphocyte Increased lymphocyte
Myoglobin Increased myoglobin
Neutrophil Decreased neutrophil count
Platelet Increased platelet count

Decreased platelet count
Potassium Increased potassium
Prolactin Increased prolactin
Protein Decreased protein
Prothrombin time Increased prothrombin time
Prothrombin time Decreased prothrombin time
Red blood cell Decreased red blood cell count
Reticulocyte Increased reticulocyte

Decreased reticulocyte
Sodium Decreased sodium
Total bilirubin Increased total bilirubin
Triglyceride Increased triglyceride
Triiodothyronine Increased triiodothyronine

Decreased triiodothyronine
Uric acid Increased uric acid
Urine blood Increased urine blood
Urine protein Increased urine protein
Urobilinogen Increased urobilinogen
White blood cell Increased white blood cell count

Decreased white blood cell count

comparison on extreme laboratory test results
abnormalities included increased prothrombin time and
elevated liver functions, such as alkaline phosphatase,
alanine transaminase, aspartate transaminase, and
gamma‐glutamyl transpeptidase levels.
The mean number of laboratory abnormalities

detected for each drug was 26.9 (±7.5). The overall
Copyright © 2010 John Wiley & Sons, Ltd.
sensitivity, specificity, PPV, and NPV were 82.8%
(±13.8%), 39.8% (±16.9%), 51.3% (±17.5%), and
76.8% (±17.1%), respectively (Table 3). In comparing
the performance of the CERT algorithm for non‐
oncology drugs with its performance for oncology
drugs, both sensitivity and specificity were similar
(77.8%, 36.9% versus 94.4%, 46.5%); however, the
oncology drugs evidenced a low PPV (32.1%) and high
NPV (98.6%) compared with those (59.6% and 67.5%,
respectively) observed with the non‐oncology drugs.
Among the 269 signals detected by the CERT

algorithm, 223 (83.0%) were associated with “hema-
topoiesis and coagulation,” “hepatobiliary enzymes,”
and “renal function and urine tests” groups. Further-
more, CERT apparently exhibits relatively higher
detection ability for the “hematopoiesis and coagula-
tion” and “hepatobiliary enzymes” groups, as the PPV
was 50.0%/87.2% and the NPV was 80.4%/72.7%,
respectively. CERT detected only 19 signals associ-
ated with “lipids and metabolism” and “hormones,”
Therefore, the PPV values for these groups were just
23.5%/20.0%.
The average durations from the first medication to the

extreme laboratory test result for true‐positive signals
(8.5 ± 3.5 days) and false‐negative signals (12.7 ±
9.5 days) were statistically different (p< 0.001). The
proportion of those who showed changes of laboratory
test results from normal value before medication to
abnormal after medication for true‐positive signals and
false‐negative signals was 14.0% and 5.1%, respec-
tively. These results suggest that the CERT is more
suitable for acute and/or frequent ADE detection.
DISCUSSION

The results of this study demonstrate that an
automated PMS system using the novel CERT
algorithm to compare extreme laboratory results prior
to and after medication during hospitalization can be
used for almost real‐time ADE signal detection, and
also, that EMR data may prove to be an invaluable
source of PMS data. When comparing the ADE
signals detected by the CERT algorithm and the
reported ADEs representing laboratory abnormalities,
the sensitivity, specificity, PPV, and NPV of the
algorithm for 10 drugs could be evaluated. This
finding identifies the CERT algorithm as an effective
method for automated ADE signal detection using an
EMR database. The entire process can be automated.
Even with 10 years of EMR data, only approximately
9 seconds were required to analyze the associations
inherent to a “drug–laboratory abnormality” pair.
Pharmacoepidemiology and Drug Safety, (2011)
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Figure 3. The formula of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the Comparison on Extreme
Laboratory Test results (CERT) algorithm. ADE, adverse drug event

m. y. park ET AL.
Although spontaneous reporting is a representative
PMS method, it requires profound efforts and costs,
and suffers from significant underreporting. DA‐based
analytical methods suffer from the same limits as
spontaneous reporting. EMR data are relatively rich in
clinical content. Therefore, a clear need exists for a
more complex method for the treatment of EMR data
for PMS. The algorithm proposed herein, CERT,
proved appropriate for automation, because of its
explicit and transparent processes. Abundant data can
be analyzed with the algorithm within 76minutes for
510 unique drug–laboratory abnormality pairs, or
within approximately 9 seconds for a drug–laboratory
abnormality pair. Considering that the existing studies
focused on just one drug–ADR pair, and that several
months to years were required for each of these
studies,9,29 the analysis speed of the CERT algorithm
is clearly on a different level. Such high levels of
speed were also attributable, at least in part, to simple
signaling rules (paired t‐test and McNemar’s test)
based on naive p‐values, high‐performance computer
equipment, and a well‐organized data structure. Thus,
the automatability and speed of the CERT algorithm
and the system is expected to allow, eventually, for real‐
time ADR signal identification. More complex signal-
ing rules or analogues to other data mining algorithms
(e.g., Bayesian Confidence Propagation Neural Net-
work, Multi‐item Gamma‐Poisson‐Shrinker) may be
considered in future studies, while maintaining the high
speed of the current system, owing to the continuous
enhancement of computing power.
Copyright © 2010 John Wiley & Sons, Ltd.
With many laboratory test results of a patient during
hospitalization, only a pair of pre‐extreme and
postextreme values was selected for analysis via the
CERT algorithm. This study design is similar to a case‐
series method or sequence symmetry analysis in the
point that we compared data from periods when
patients were exposed to target drugs and data from
periods when patients were not exposed. These designs
have the advantage of removing confounders consid-
ered in case‐control30 or cohort studies31. Actually,
because the first day of medication was used to divide
baseline and risk period, it is closer to a case‐series
method than a sequence symmetry analysis, which
only considers the sequence of drug administration.
However, it also differs from a case‐series method
because we do not consider washout periods and regard
whole periods after medication as risk periods. Also, it
is dissimilar in that we used extreme laboratory test
results, not diagnosis or symptoms.
The use of extreme, rather than mean or median

values, as a representative pair may provoke contro-
versy. However, in cases in which the mean or median
values were used and a potentially causative drug was
discontinued, or in cases in which an antidote to reverse
ADR was administered, the transient ADR effect on
laboratory results would be meaningfully mitigated,
and the aforementioned abnormal laboratory results
would be diluted, and ultimately disappear.
This study was limited in several ways. First, no

definitive standards have yet been established for
ADR identification. Published known ADEs and their
Pharmacoepidemiology and Drug Safety, (2011)
DOI: 10.1002/pds
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Copyright © 2010 John Wiley & Sons, Ltd.
mapped (representative) laboratory abnormalities were
used as surrogate markers for assessments of algorithm
performance. However, the previously published ADE
lists themselves cannot be used to confirm their
identifications as true ADRs, or vice versa. ADE lists
on UpToDate change constantly. For example, no
renal injuries associated with clopidogrel were listed
on UpToDate in March 2010; however, in the next
month, the ADE of clopidogrel was listed on
UpToDate. Nevertheless, the signal raised by CERT
was classified as a false‐positive herein, but we are not
completely clear as to whether this result is a true or a
false positive.
Amore robust validation process could be conducted

in the future, via a simulation study.
Confounding by indication must also be taken into

careful consideration in future studies. Combination of
CERTwith an algorithm that can reduce confounding by
indication might be considered.32 Time‐dependent co‐
variate could be a confounder as well. For example, the
CERT indicates that valproic acid is associated with
serum creatinine increase. After close chart reviews, we
found that brain injury followed by septic shock is one of
the common causes for that. As these confounders
can cause false or even positive signals, ADE signals
detected by CERT, also signals by other quantitative
methods, should be carefully considered as a supplement
to qualitative investigation.
The subject populations were limited to inpatients.

Multiple laboratory tests prior to and after medication
were required for analysis. Thus, laboratory tests that
are performed only rarely would not be included in the
set of laboratory abnormalities. Drugs prescribed
predominantly to outpatients were not subjected to
analysis. The duration of drug exposure and drug dose
were not taken into consideration herein. Only one
tertiary teaching hospital’s EMR database was used
for evaluation. In the future, multicenter analysis will
be required to generalize this algorithm.
A fully automated system using the CERT

algorithm might be capable of successfully identifying
previously published ADRs within a very short time
by analyzing the EMR database of a Korean tertiary
teaching hospital. The use of EMR databases for
the detection of laboratory abnormalities after medi-
cation may prove useful in monitoring the safety of
marketed drugs. If so, the technique would contribute
greatly to the exploratory data analysis of the EMR
database at the front‐end of timely ADR‐preventive
strategies. EMR databases, prescription data and
laboratory results in particular, would be invaluable
data resources for ADR signal detection. However,
despite the encouraging results of this study, the
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Table 3. Sensitivity, specificity, positive predictive value, and negative predictive value of Comparison on Extreme Laboratory Test results algorithm for
each drug

Drug No. of detected signals* Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Non‐oncology drug Ciprofloxacin 25 64.3 47.6 64.0 61.5
Clopidogrel 25 76.9 32.6 48.0 69.2
Ketorolac 33 95.2 37.1 75.8 83.3
Levofloxacin 20 70.6 59.0 70.0 54.8
Ranitidine 38 92.3 25.6 57.9 76.9
Rosuvastatin 24 64.3 33.3 37.5 66.7
Valproic acid 36 81.0 22.9 63.9 60.0
Subtotal† 28.7 77.8 36.9 59.6 67.5

Oncology drug Etoposide 28 100.0 34.6 35.7 100.0
Fluorouracil 13 100.0 76.9 38.5 100.0
Methotrexate 27 83.3 28.0 22.2 95.8
Subtotal† 21.0 94.4 46.5 32.1 98.6

Total‡ Average (SD) 26.9 (7.5) 82.8 (13.8) 39.8 (16.9) 51.3 (17.5) 76.8 (17.1)

PPV, positive predictive value; NPV, negative predictive value; SD, standard deviation.
*Number of signals detected by Comparison on Extreme Laboratory Test results algorithm among 51 laboratory abnormalities.
†Average performance for non‐oncology drugs and oncology drug.
‡Average performance for all 10 drugs.

Figure 4. Previously reported laboratory abnormalities and detected laboratory abnormalities by Comparison on Extreme Laboratory Test results (CERT)
algorithm. Rows represent laboratory abnormalities, and columns represent drugs. The arrows indicate laboratory abnormalities transformed from previously
reported adverse drug reactions using the mapping table for each drug: “↑” and “↓” designate elevation and reduction, respectively. The colors in the cells
mean signals detected by CERT. The red, blue, and red‐to‐blue gradient cells indicate “increase,” “decrease,” and “both increase and decrease” on laboratory
tests after medication, respectively. PPV, positive predictive value; NPV, negative predictive value; LDL, low‐density lipoprotein
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comparison on extreme laboratory test results
algorithm presented herein will require further
evaluation for generalization.
KEY POINTS

• Quantitative analytic methods are being increas-
ingly used in PMS.

• Currently existing methods are limited to spon-
taneous reporting data and are inapplicable to
hospital EMR data.

• New quantitative methods are required to use
EMR data as a source for ADR signal detection.

• Comparison on Extreme Laboratory Test results
algorithm is a quantitative analytic method com-
paring extreme laboratory results prior to and
after medication during hospitalization.

• The algorithm can be regarded as a useful ADR
signal detection tool, which can be routinely ap-
plied to EMR data.
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