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Translational Bioinformatics: Coming of Age

ATUL J. BUTTE, MD, PHD

A b s t r a c t  The American Medical Informatics Association (AMIA) recently augmented the scope of its
activities to encompass translational bioinformatics as a third major domain of informatics. The AMIA has defined
translational bioinformatics as “. . . the development of storage, analytic, and interpretive methods to optimize the
transformation of increasingly voluminous biomedical data into proactive, predictive, preventative, and participatory health.”
In this perspective, I will list eight reasons why this is an excellent time to be studying translational
bioinformatics, including the significant increase in funding opportunities available for informatics from the
United States National Institutes of Health, and the explosion of publicly-available data sets of molecular
measurements. I end with the significant challenges we face in building a community of future investigators in
Translational Bioinformatics.
� J Am Med Inform Assoc. 2008;15:709 –714. DOI 10.1197/jamia.M2824.
Introduction
Translational Medicine has been described as the effective
transformation of information gained from the past fifty
years of biomedical research into knowledge that can im-
prove [the state of] human health and disease.1 This trans-
formation requires two processes to work effectively: first,
taking basic biological findings and applying them to hu-
man biology, and second, taking clinical research findings
and actually improving the health of populations. The
specific development of information systems is a rate-limiting
challenge for these two processes.1 Many healthcare institu-
tions are expanding the role of their operational information
technology systems, such as electronic health record, deci-
sion support, and computerized provider-order-entry sys-
tems to include the mission of translational research.2

Achieving the impact of translational medicine requires
expanding the role and scope of bioinformatics just as much
as those for clinical informatics. In 1999, the Advisory
Committee to the Director, National Institutes of Health
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(NIH) Working Group on Biomedical Computing, co-
chaired by David Botstein and Larry Smarr, released the
Biomedical Information Science and Technology Initiative
(BISTI) report, which recommended that NIH should be
responsive to the growth in biological data and should
apply funding resources to accelerate the development and
application of computational tools to science. While the
BISTI report certainly led to increased funding for bioinfor-
matics research, in retrospect, the subsequent initiatives
often led to the development of novel tools, perhaps at the
expense of identifying novel questions. Perhaps there was
no way for the BISTI authors to predict that a generation of
scientists, asking medical questions at a molecular level
solely using computational resources, could appear so
quickly.

The circumstances are now such that it is time to recognize
this new area of inquiry called Translational Bioinformatics.
The American Medical Informatics Association (AMIA) re-
cently added translational bioinformatics as one of its three
major domains of informatics. The AMIA has defined trans-
lational bioinformatics as:

“. . . the development of storage, analytic, and interpretive methods
to optimize the transformation of increasingly voluminous biomed-
ical data into proactive, predictive, preventative, and participatory
health. Translational bioinformatics includes research on the devel-
opment of novel techniques for the integration of biological and
clinical data and the evolution of clinical informatics methodology
to encompass biological observations. The end product of transla-
tional bioinformatics is newly found knowledge from these integra-
tive efforts that can be disseminated to a variety of stakeholders,
including biomedical scientists, clinicians, and patients.”3

Translational Bioinformatics involves the development and
use of computational methods that can reason over the
enormous amounts of life science data being collected and
stored for the purpose of creating new tools for medicine.

While bioinformatics methodologies have been used to
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enable biological discoveries for decades, here the end
product has to be translational, or applying to human health
and disease.

Why should investigators in computer science, biomedical
informatics, and biomedical research in general be interested
in Translational Bioinformatics today? I will list eight rea-
sons why now is an excellent time to be studying Transla-
tional Bioinformatics. Five of these reasons are intrinsic to
this scientific discipline, while three are extrinsic, regarding
the practice of this discipline in today’s scientific, funding,
and political context. I will end with the significant challenge
of building a community of future investigators in Transla-
tional Bioinformatics.

Availability of Molecular Tools
First, many tools now exist that enable a large scale, parallel,
quantitative, and inexpensive assessment of molecular
states. Instead of thinking about molecular measurements
one at a time, we now have many available tools in science
that measure many molecules at a time; these tools are
commonly described as being high throughput based on this
feature. The premier example of this is the gene expression
microarray,4,5 which enables the measurement of gene ex-
pression (RNA) levels across tens of thousands of genes.
Microarray technology has successfully quantitated differ-
ences between diseases and discovered novel sub-types of
disease.6,7 This one platform has provided the ability to
quantify gene expression under differing experimental con-
ditions. It can be used by various algorithms to classify,
learn, or predict biologically relevant processes.

Beyond being large, these technologies are nearly compre-
hensive. It’s one thing having a technology to measure ten
genes, or 10,000 genes, but once you get close to 40,000
genes, there aren’t many more genes left to measure. This
may be only an illusion of stability, however, as demand
increases for levels of resolution to improve. For instance,
newer gene expression microarrays have evolved to mea-
sure exons, the individual components of RNA molecules,
instead of entire transcripts.8 Future technologies may en-
able faster measurements to be made, with less bias towards
the known catalog, or with less measurement noise.

Another important point is the low cost of these modalities.
Gene expression microarrays were a cost-prohibitive tech-
nology when they were developed 11 years ago, but now
they are essentially commodity items. Microarrays that
measure activity of every gene in the genome now cost
only about $300 per sample (plus labor and supplies) for
academics.

Other research modalities have also become inexpensive.
Between any two individuals, there are an estimated 10
million differences, or single nucleotide polymorphisms
(SNPs), in DNA.9 The measurement of 1.8 million of these
differences also costs about $300 per sample, in academia.
Last year’s analytic model had half a million SNPs for the
same price, and the model from the previous year had about
10,000 SNPs for the same price, so there has been a geomet-
rically progressive price reduction.

Public Availability of Molecular Measurement Data
Second, not only do technologies exist that enable the large

scale, parallel, quantitative, and inexpensive assessment of
molecular states, but also the data from these tools are now
increasingly publicly available. A translational bioinforma-
tician may not necessarily even have to run one of these
data-generating machines.

The premier example of an internationally available data
resource is GenBank, initially created in the early 1980s by
Walter Goad.10 Because so many investigators at the dawn
of the sequencing era were generating DNA sequences,
there was a need for a repository to centrally manage and
use these sequences. Funding from the NIH for GenBank
started in 1982, and in the subsequent quarter century,
GenBank has grown to include 82 billion nucleotides in 78
million sequences.11 At the time of this writing, hundreds of
organisms have been completely sequenced including, of
course, man and mouse. But a total of 270,000 species have
had some sequence measured.12 In this way, GenBank has
both breadth and depth.

The equivalent of GenBank for gene expression microarrays
is known as the Gene Expression Omnibus (GEO).13 The
GEO is also maintained by the National Center for Biotech-
nology Information at the National Library of Medicine. At
the time of this writing, GEO has over 183,000 samples from
over 7,200 experiments, an impressive growth in seven
years. The number of samples either doubles or triples each
year.

This availability of massive data sets is not just an American
initiative. The European Bioinformatics Institute (EBI) has a
similar web-based database called ArrayExpress14 with over
a hundred-thousand samples from over 3,000 experiments.
All together, translational bioinformaticians can likely get
their hands on more than a quarter million microarray
samples today. This is more data than can be generated by
any one biologist, and the results from analyzing these
larger collections of samples are potentially enormous in
impact. As of 2007, diseases contributing to nearly a third of
human disease-related mortality in the United States have
been studied by microarrays.15

This availability is not limited to gene expression data. The
EBI also has a web-based database called PRIDE, which
holds proteomics data.16 The PRIDE database holds 3,200
independent samples with 2.6 million mass spectra freely
available for download. Data from genome-wide association
studies have their own repository, the NCBI Database of
Genotype and Phenotype (dbGaP).17 As of this writing,
fourteen genetic studies are available for downloading in
this one year old database, with over 40,000 human samples.

Culture of Sharing Molecular Data and Tools
Why are these measurements increasingly available? Avail-
ability is a function of both stick and carrot. Molecular data
would not be available without some kind of mandate, and
the strongest comes from academic journals. Top-tier jour-
nals require the deposition of molecular measurements into
international repositories for manuscripts under consider-
ation for publication.

Funding agencies also increasingly require the public avail-
ability of scientific data, such as the Wellcome Trust and
NIH.18 Grant proposals to NIH asking for over $500,000 per
year need to have text describing how the data will be

shared.19 Though this requirement is new, policies in shar-
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ing data from major projects, such as the Human Genome
Project, go back more than a decade.20

Beyond these requirements, however, there is a culture of
open sharing in molecular biology and bioinformatics that
continues to grow: sharing of tools, data, findings, and
publications. Important tools for bioinformatics, such as
Significance Analysis of Microarrays (SAM),21 TM4 Multiple
Expression Viewer,22 GenePattern,23 GenMAPP,24 and R
and Bioconductor,25,26 are downloadable for free, and in
many cases, have available source code.

In many cases, biomedical research communities have come
together and have realized that sharing takes more than just
uploading files to a common website. Through contention
and agreement, these communities are starting to standard-
ize terminology, phenotypes, and gene names.27 Challenges
still remain in cataloging, calibrating, and normalizing data
across experimenters, across measurement modalities, and
across biological models; improper attention to these could
lead to false positives and negatives. These biomedical
research communities could benefit from learning how some
of these challenges were addressed by the clinical informat-
ics community.

Where those standards have not yet been reached, there is at
least the understanding in the appropriate communities that
standards must be reached. Increasingly, there is inter-
community sharing, where one community will learn from
the standardization efforts of another community. Examples
of inter-community sharing include the design of the
Minimum Information About a Proteomics Experiment
(MIAPE)28 using the Minimum Information About a Mi-
croarray Experiment (MIAME),29 and partnerships between
the FlyBase and ZFIN with the National Center for Biomed-
ical Ontology to standardize phenotype descriptors.30

Curiously, this culture of sharing has not extended well to
clinical research or clinical informatics. Clinical informatics
tools, including vocabularies and text-parsing tools, are not
always shared, or require signed licensing agreements.
Clinical data, even de-identified subsets, are not as available
on the Internet as molecular measurements. This could be
due to fears of release of personal medical information,
disclosure of evidence of culpability, or worries that one
might miss a discovery in one’s own patient cohort.31

Clinicians are Expected to Interpret Bioinformatics
Methodologies
It is amazing how much bioinformatics physicians and other
health professionals must know. Terms like “shrunken cen-
troid,” “unsupervised cluster analysis,” “gene expression
signature,” “ten-fold cross validation,” “global scaling,” “q
value,” and even the “Cochran-Mantel-Henzel stratified
analysis test” appear in journals read by healthcare provid-
ers. For example, all the preceding terms recently appeared
in The New England Journal of Medicine. The growing impor-
tance of high-throughput molecular measurements in med-
icine even led to a thirteen article series in The New England
Journal of Medicine between 2002 and 2003, with the lead
article in the series by Alan Guttmacher and Francis Col-
lins.32 The role of Translational Bioinformatics now plays a
front-page role in the top-most tier of journals. Even if

clinicians do not know how to use or implement these
methods, they must understand how these methods are
relevant to health care.

Question Asking in Translational Bioinformatics
This topic addresses the sustainability and growth of the
field of Translational Bioinformatics. Certainly biologists
now understand and apply high-throughput measurement
modalities. A biologist running an expression microarray or
proteomic study will generate a sizable amount of raw data.
Distilling all the raw data and determining the relevant
operational genes and findings clearly requires the proper
application of bioinformatics. Over the past two decades, it
has been clear that bioinformaticians can help biologists to
analyze such complex data, given the primary questions that
the biologists are asking.

In addition, bioinformatics must play a key role in the
storage and retrieval of high-throughput data. A bioinfor-
matician could work with a biologist to set up a web site and
a standardized database for experimental measurements,
facilitate the sharing of the measurements, and relate them
to clinical outcomes.

Because of the public availability of raw high-throughput
molecular data, roles for translational bioinformaticians can
now change to beyond just providing a service. Transla-
tional bioinformaticians, given the data resources outlined
above, have essentially more samples available regarding a
given disease, e.g., breast cancer, than any individual biol-
ogist studying breast cancer might alone create. A transla-
tional bioinformatician can go to the NCBI GEO and down-
load over 9,300 microarray studies on breast cancer (over
1,800 of them entered in 2007).

The availability of substantial public data enables bioinfor-
maticians’ roles to change. Instead of just facilitating the
questions of biologists, the bioinformatician, adequately
prepared in both clinical science and bioinformatics, can ask
new and interesting questions that could never have been
asked before. For example, Mootha et al. integrated four
publicly available expression data sets with genetic linkage
data and proteins identified from mitochondria to find the
gene mutation associated with Leigh syndrome, French-
Canadian type.33 English collected 49 publicly available
high-throughput experiments of multiple types, such as
genetic scans, gene expression microarrays, proteomics, and
RNA interference, all related to the study of obesity. She
found that an integrative model across 49 experiments could
statistically significantly outperform each of the indepen-
dent experiments in rediscovering known obesity-associated
genes and predicting novel ones.34

These examples demonstrate an approach to integrating
public and private data sets to address an important ques-
tion in medicine. There is a role for the translational bioin-
formatician as question-asker, not just as infrastructure-
builder or assistant to a biologist.

Calls for Translational Medicine
The final three reasons to learn and participate in Transla-
tional Bioinformatics are extrinsic to the science and tools
available in that discipline. They relate to current practices
in Translational Bioinformatics. There are increasing calls
from many vantage points for Translational Medicine. In the

late 1990s, the NIH budget doubled, with grant proposal
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funding rates rising to a peak of 32%.35 The completion of
the pilot phase of the Human Genome Project in 1999 and
the release of the finished genomic sequence in 2003 pro-
vided visible evidence that increased NIH budgets yielded
new research data and tools. Now, more than five years after
the doubling many constituencies demand clinical and
translational applicability from basic science research—for
patients and the public,36 the pharmaceutical industry,37

clinical researchers,1,38 basic science investigators,39 funding
agencies,40 and NIH itself.41,42 While the NIH budget dou-
bling led to new data and knowledge, questions about
which products from the genome era can help patients are
fair.

Increasing Research Funding for Translational
Bioinformatics
Calls for increasing translational research have led to greater
financial support for Translational Bioinformatics. In May
2002, Elias Zerhouni, Director of the National Institutes of
Health, outlined the NIH Roadmap, a plan to modernize the
process of medical research for the 21st century. Dr. Zer-
houni outlined three major themes as part of the initial
Roadmap: (1) New Pathways to Discovery, which addressed
Bioinformatics and Computational Biology as novel meth-
ods for molecular study, (2) Research Teams of the Future,
which suggested that cell biologists and computational
biologists should collaboratively accelerate movement of
scientific discoveries from the bench to the bedside, and
(3) Re-engineering the Clinical Research Enterprise, which
tackled the transformation of basic research discoveries into
drugs, treatments, and methods for prevention. There has
been a role for Translational Bioinformatics in all three of
these major themes of the NIH Roadmap.

Most importantly, Dr. Zerhouni wrote in The New England
Journal of Medicine in 2005:

It is the responsibility of those of us involved in today’s biomedical
research enterprise to translate the remarkable scientific innova-
tions we are witnessing into health gains for the nation . . . At no
other time has the need for a robust, bidirectional information flow
between basic and translational scientists been so necessary.41

There are impressive informatics-related terms in that quote
for a Director of NIH, such as “robust, bidirectional infor-
mation flow.” Coincident with this quote and publication,
the push to reinvent clinical research reached a new peak
with the release of the Request for Applications (RFA) for
the NIH Roadmap Institutional Clinical and Translational
Science Awards (CTSA).43 These awards required that med-
ical schools, research hospitals, and related institutions
commit to reinventing how they perform and teach clinical
and translational research. To enable this transformation,
NIH planned to fund approximately 60 institutions at about
$30 million each. As might be expected, the RFA for a $30
million grant spans over 50 printed pages. Unexpectedly,
however, the word “informatics” in this RFA appeared 38
times.43 An institution cannot apply for a CTSA grant
without organizing a clear plan for informatics, and must
include tools and infrastructure to enable Translational
Medicine. Each institution is required to determine a local
Biomedical Informatics Director, and each of these partici-
pates on a national committee to set standards for clinical

and translational research. This was clear recognition by
NIH that the problems of Translational Medicine will not be
solved without the help of informatics, and substantial
money backed up this statement. Beyond the CTSA, NIH
has continued to support Translational Bioinformatics
through its funding of other large programs, including
seven National Centers for Biomedical Computing (NCBC)
and the Cancer Bioinformatics Grid (caBIG).

The CTSA effort provides an example of the depth of
funding available when NIH focuses on specific major
problems. There is also breadth. Figure 1 shows the yearly
count of how often the word “informatics” appears in
Request for Applications (RFAs) and Program Announce-
ments (PAs) issued in the NIH Guide, the weekly publication
issued by NIH on new funding mechanisms and program
announcements.

Between 2001 and 2005, mentions of “informatics” grew at a
slow pace, with 40 and 80 mentions per year. But over the
past two years, during a period when the NIH budget has
otherwise been relatively flat, there has been a remarkable
increase. In 2006, the number of RFAs “informatics” men-
tions jumped dramatically to nearly 160. Example RFAs in
which “informatics” appears include the obviously related,
such as “A Data Analysis & Coordination Center (DACC)
for the Human Microbiome Project” (RFA-RM-08-007) and
the “Biomedical Informatics Research Network Coordinat-
ing Center (U24)” (RFA-RR-08-002), but also the less obvi-
ous, such as “Continuation and Expansion of the Drug
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F i g u r e 1. Bars represent the count per year of Request for
Applications (RFAs) and Program Announcements (PAs)
found through the NIH Advanced Funding Opportunities &
Notices Search web-site44 containing the term “informatics”,
either currently active or inactive. Line represents the fraction
of this count over the total count of RFAs and PAs that year.
Induced Liver Injury Network” (RFA-DK-07-012) and “As-
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say Development for High Throughput Molecular Screening
(R21)” (PAR-08-024).

While the 2007 count of 136 was lower than 2006, we have
now reached new watershed in that a quarter of the RFAs
and PAs mentioned the term “informatics.” This crude
method of counting admittedly does not distinguish clinical
informatics from bioinformatics, does not consider the dol-
lars available for each RFA, ignores the duration, availabil-
ity, and expiration of RFAs, and may even falsely count
RFAs in which informatics is explicitly excluded. Yet this
still remains a simple example of how broadly informatics is
now considered across many funding mechanisms involv-
ing all institutes of NIH.

Few Investigators in Translational Bioinformatics
The final point is obvious. There is an absolute paucity of
people trained to make use of these resources, to build the
infrastructure, to ask these novel questions, and to even
answer those questions. In the United States, the National
Library of Medicine (NLM) University-based Biomedical
Informatics Research Training Programs comprise the pre-
mier mechanism for students to combine advanced health
professional degrees with doctoral level (PhD) studies in
biomedical informatics, producing as a result MD/PhD,
RN/PhD, PharmD/PhD, etc. trained individuals. While
these programs were initially geared towards training indi-
viduals in healthcare informatics, they have diversified in
scope and focus. Fifteen of the 18 funded training programs
now emphasize training in bioinformatics or computational
biology.45 In fact, more training programs emphasize train-
ing opportunities in bioinformatics or computational biol-
ogy than other areas of biomedical informatics, including
healthcare informatics, clinical research informatics, and
public health informatics. Of course, training of such indi-
viduals is not limited to those institutions with NLM-based
training programs. Many other top-tier institutions train
students in departmental programs, housed in Departments
of Biomedical Informatics, Genetics, and Computer Science,
as well as inter-departmental programs.

The future development of practitioners of Translational
Bioinformatics will require that individuals enter this disci-
pline from even more diverse backgrounds. For instance, it
is still rare for a clinician-scientist, who has completed
training in medicine, pediatrics, or surgery, to undergo
joint training in a sub-specialty as well as bioinformatics.
A quantitatively-thinking cardiologist-scientist in-training
could be trained in both human physiological measurements
as well as methods for multi-scale modeling of the heart. A
quantitatively-thinking oncology research-nurse-in-training
could be trained in both making molecular measurements
and methods in machine learning to find genes that predict
outcome. Success in these joint training programs will
require vision, as well as bioinformatics training program
directors that reach out to and work with traditional sub-
specialty fellowship directors.

Conclusion
The role and future importance of the nascent field of Trans-
lational Bioinformatics appears promising. There are demon-
strated needs, funding, resources, and roles. The most signifi-

cant challenges to the future growth of Translational
Bioinformatics remain in education. Clinicians need to be
educated so that they can understand Translational Bioinfor-
matics methods as well as methods used in clinical trials. It is
reasonable for educators in bioinformatics to expect more
graduate students to take a greater interest in specific open
clinical questions, in addition to the methods they are uniquely
qualified to develop and apply to solve those questions.

Computer scientists, even at the undergraduate level,
should be educated that the algorithms and methods they
develop in machine learning, visualization, network model-
ing, and knowledge representation will find a receptive
audience in biomedical research. Quantitative-thinking un-
dergraduate and graduate students in biology and chemis-
try should be exposed to, and excited by, increasing digital
sources of data. There is no single educational solution that
spans these constituencies, but the pieces have to include
web-based instruction, traditional lecture-based courses,
graduate degree programs, research fellowships, and con-
tinuing medical education courses. Some of these educa-
tional opportunities might be most efficiently delivered
when centralized within departmental structures, but
clearly Translational Bioinformatics will be practiced out-
side existing department walls.

Despite these challenges in developing of a committed set of
investigators in Translational Bioinformatics, this is clearly a
unique and exciting time to be part of the growth phase of
this new scientific discipline.
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