Biochip informatics-(I) :

biochip normalization & differential expression

Ju Han Kim, M.D., Ph.D. SNUBI: SNUBiomedical Informatics http://www.snubi.org/

Biochip informatics: challenges

Pre-processing:

- technology variation
- noise & data filtering
- missing / negative values / P & A calls
- ✓ data scaling
- Can I assume normality?
- chip quality, other artifacts

Functional Clusters:

- clustering quality, consistency, & robustness
- Statistical Issues:
 ✓ study design / # of replicates / multiple testing
- Integrative Biochip Informatics
 - Can we get more out of it?

Data structure				Gene expression level of gene 10 on slide 4 = Log2(Red intensity / Green intensity)													
	이 입법() · 사위() A 31 박 11 A 05/5Fu	PMAPA	A Curtruller 2			• 11 •	***	•••0••×a ::		-1							
ProbeNamy Pin	Row Co	b Arm A	E SSISFULAC	SEFULA	G SSISFUL AG	H SISFU) AGS	I ISFULAGS	J K L ICHEN AGSICHEN AGSI	M Diseni AGSI Ciseni A								
1	Tours Is	1	31392	189	30893	104	-0	COST DAS A	and the	and radiated							
3	1 1	3	5835	103	9267	21	0	바운(E) 등합(E) 주기(A)				Acrogat					
4	1 1	4	762	123	526 52	23 20	-50		 A 31 41 (B 0 ProbeNam 	T PAM FAM Control	NYT BR		- 11 -	N 7 2 8 8 8	10 . 74	111-0-2	
6	1	6	239	105	100	8	-50	AB	C	DE	F	G	н	1 3	К	L	м
7	1 1	7	251	08	90	12	-50 1	ProbeNam AccNo	description AG	S.5Fu AGS.Cap	AGS OPT A	GS.dck AC	S.tax AG	S.TSA MI.SFu	M1.Cisplati M	I.CPT M	41.dox
9		8	909	84 92	479	9	0 2	1 Control					0.1577 -0		-0.11319 -	0.05789 -	-0.487
10	1 1	10	525	112	733	19	0 4			140479 -0.01557 258726 0.231119				02613 0.119983 38426 0.014608			0.769
11	1 1	11	946 160	112	747	16	0 5	4 HSU580		07388 0.191485				26557 -0.58692			0.8727
13	1 1	12	1080	133	620	17	0 6		7 mRNA to 1 0.4	407427 0.511184	4 -0.11682 (0.01574 -0	01953 -1 11025	-0.15718 -	1.55553 0	0.2999
14	1 1	14	759	99	530	12	0 7	6 HSU628	0 Cystatin M 0.1 2 alpha-2 c c ~0	119773 0.057675	5 -0.24709		0.01607 0.3 162305 -0	18141 0.097018	0.312952 - 0.031075 0	0.93036	1.264
15		15	172	92	46	21 199	-50 8		Zimprie-2 ct0 T. (clone FE+ -0		7 -0.51186			15215 0.013258		1553752	-0.417
17	1 1	17	643	151	221	12	0 10	9 HUMTES	L1Transcript -0	03117 -0.57381	1 -1.158	1222120 0	0.13322 0.6		0.162955 1	.681153 -	-0.190
18	1 1	58 19	170	112	69 128	40	-50 11	10 HSTGFP		637029 0.306119	9 0.671721	0.092811 0	100285 -0	01378 0.198399	0.277527 -	0.30422 0	0.9755
20	1	20	221 4115	137	3386	24	0 12		X mPNA for I 1.1	157305 -0.13952	2 0.054295	0.06791 0	334338 0.1	93091 1.089525 92877 1.188306	0.063626 -	0.48632 0	3,5704
21	1 1	21	845	123	295	18	0 1/			32852 -0.01395	5 -0.02016		258698 0.3	92194 0.26654		1.212031	-0.31
22	1 1	22 23	715	118	231 201	19	0 15				5 0.705635 1		28072 -0		0.018813 -	1.67709	-0.14
24	11 1	24	204	168	151	41	0 10			13241 1.38281				84352 0.940503		-0.1379 0	3.3721
25	1 8	1	4770	180	4926	76	0			53813 -0.09011 61388 0.51975	2 =0.0715	0.69292 0	121307 0.4	46787 0.24629 UE034 0.32513	0.000975 0	0.11516 0	0.3708
26 27	1 2	2	143	131	107	67 17	-50 1			0,0601 0.500104	4 1.206489 1	009139	0.2119 -0	80297 0.641503	0.013242 0	406845 (0.5340
28	1 2	- 4	350	153	183	30	0 20			301187 -0.08865	5 -0.39618	0.14224 0.			0.019412 0	079321 -	0.231
29	1 2	5	82 226	65 90	14	6	-50 21			35641 0.030812		0.064476 -0	0.01424 0.8	112783 -0.00597 20713 0.338236	0.017204 0		0.724
31	1 2	7	3576	86	3499	9	0 2			70421 -0.26155				97442 0.123586		.558063 (0.4894
32	1 2	B	143	109	55	19	-50 2/			2.8702 0.102496			0 09124 -0		-0.22065 -	0.52445 -	-0.828
33	1 2	9	2447 886	124	3149 748	55	0 25			912354 0.316226 15029 -0.18726			0.95613 0.5			1.09846 -	-0.306
name .	1 5		16.17	1.76	100	57.00	0 20			15029 -0.18728 530059 0.20997		0.06282 -	0.3364 -0		0.009103 - 0.182023 1	0.18873	~1.8 n.9692
							21			233743 0.069723				0.0906 -0.44642			0.5587
							25			108227 -0.47796			1.19051 0.4			1.03062 1	1.3399
							3(DmRNA for + 0.1 B Sorcin (SR 0.1	123524 -0.75081 280575 -0.40704	The second second	0.068608 0.	00106.0	18712 -1.08774 06976 1.19625	-0.16083 -	-1.03587 0 422088	0.24
							1				4 -1.02439 -	0.119783 0					-0.24
							3	32 HSU476		316825 -0.01851							-0.250
							3			111617 0.111384				05389 -1.09474		0.84176 0	0.5496
							3			110652 -1.00788	8 -0.26525 (1.085437 0.	163188 0.3	05369 0.357555	0.099007 ~	-0.10956 0	0.8191
								Concession of the street of the									

Geometric transformations: scaling

x' = x · s_x, y' = y · s_y Scaling factor : s_x (x축으로 크기 조정), s_y (y축으로 크기 조정)

 $P' = S \cdot P$

Uniform Scaling: $s_x = s_y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

P' = T + P $P' = S \cdot P$ $P' = R \cdot P$

$$P' = \underbrace{(T \cdot R \cdot S \cdot T \dots)}_{M} \cdot P$$

Figure 3. Within-stide normalization. Excipit displaying the log-ratio distribution after within-print-tip-group location normalization for each of the 16 print-tip groups. The array was printed using a 4 by 4 print-head and the print-tip groups are numbered first from left to right then from top to bottom starting from the top left corner (data from apo A1 knock-out mouse #8 in experiment (A)).

Taking scale into account

Assumptions: all print-tip-group have the same spread

True ratio is μ_{ij} . The observed ratio is $M_{ij} = a_i \mu_{ij}$. A robust alternatives to the latter estimator is

$$\hat{a}_i = \frac{MAD_i}{\sqrt{\prod_{i=1}^{I} MAD_i}}$$

where the MAD(Median Absolute Deviation) is defined by

 $MAD_i = \text{median}_i \{ | M_{ii} - \text{median}_i (M_{ii}) | \}$

Statistical testing

- Form a statistic (such as T) (for each gene) from the data
- Calculate the null distribution(s) for the statistic
- Choose the rejection region
- Compare the statistic to the null distribution(s) of the statistic
- Assigning a score

Classification tree as an ex. of classification

Sunburn at the Beach

DanaBlondeTallAAlexBrownShortAAnnieBlondeShortAEmilyRedAverageHPeteBrownTallH	Light No Average Yes Average Yes Average No Heavy No Heavy No	
AlexBrownShortAAnnieBlondeShortAEmilyRedAverageHPeteBrownTallH	Average Yes Average No Heavy No	None sunburn sunburn
Annie Blonde Short A Emily Red Average H Pete Brown Tall H	Average No Heavy No	sınburn sınburn
Emily Red Average H Pete Brown Tall H	Heavy No	smburn
Pete Brown Tall H	- ·	
	Heavy No	None
John Brown Average H		TIOLO
	Heavy No	None
Katie Blonde Short Li	light Yes	None
Example from Wir	-	1 - 1999

classification	BL EWS ND HWS
exercise	813841 lissue plaaminogen activator 859352 quinone oxidoreductase homolog 207274 insulin-like growth factor 2 206448 insulin-like growth factor 2 (somatomedin A) 888219 homolog of mouse mesoderm specific transcript 784234 librobiat growth factor 2 (somatomedin A) 888219 homolog of mouse mesoderm specific transcript 784234 librobiat growth factor 2 (somatomedin A) 888219 homolog of mouse mesoderm specific transcript 784234 librobiat growth factor 2 (somatomedin A) 888219 homolog of mouse mesoderm specific transcript 784234 librobiat growth factor 2 (somatomedin A) 888219 homolog of mouse mesoderm specific transcript 784234 librobiat growth factor 2 (somatomedin A) 888219 intermining and transcript and tran

