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ABSTRACT

Motivation: In determining the function of a gene, it provides much

information to observe the changes in a biological system after

disruption of the gene of interest through its knockout. Thanks to the

microarray technology, it is now possible to profile transcriptional

changes of the whole genome, thus differentiating genes that are

significantly affected by the knockout. Based on microarray

experiments of hundreds of different knockouts, we assigned the

so called, ‘Perturbation Sensitivity’, to the Saccharomyces cerevisiae

genome by the frequency of significant changes in the transcript

level in hundreds of knockout conditions. Biologically, it reflects the

degree of a gene’s sensitivity to external perturbations.

Results: Through gradually enriching gene sets with more perturba-

tion sensitive genes, we show that perturbation sensitive genes are

usually not essential and their coding proteins have fewer physical

interaction partners and more transcription factors bind to their

upstream sequences. And the two extreme gene groups, perturba-

tion sensitive versus perturbation resistant, have mutually exclusive

functional annotations.

Contact: juhan@snu.ac.kr

1 INTRODUCTION

We perturb a system to understand it. In biology, one of the

most widely employed approaches to understand the function

of a gene is to completely or partially disrupt the gene of

interest and observe phenotypic changes in the transformed

animal (knockout mice) or the cell (deletion mutants). With the

advent of high-throughput technologies like DNA microarray

the transcriptional activity of thousands of genes are measured

simultaneously and it is now possible to observe not just

phenotypic changes but also the ups and downs of thousands of

genes in response to gene disruptions. We can reliably assume

the existence of direct or indirect transcriptional relationship

between the disrupted gene and the significantly up or down

regulated gene secondary to the disruption.
This cause and effect relationships between genes (the

disruption of gene A leading to the transcriptional change of

gene B) were modeled in the Bayesian Network approaches

(Friedman, 2004; Pe’er et al., 2001). From the transcriptional

profiling study of the yeast genome in response to 276 different

gene disruptions (Hughes et al., 2000), the approach aims to

extract graph structures that represent statistical dependency

and causal relationship among genes. But the extracted graph

structure deals with only subsets of genes out of thousands of

yeast genes (Markowetz et al., 2005).

On the other hand, the ‘disruption network’ approach

(Featherstone and Broadie, 2002; Rung et al., 2002; Wagner

and Fell, 2001) is simpler but genome-wide. It is defined as a

directed graphwhere nodes represent genes and arcs link nodes if

the disruption of the source gene significantly alters the target

gene. They explored the disruption network for network pro-

perties like degree centrality, scale-free topology andmodularity.
Now, rather than extracting biologically meaningful graph

structures within each network, we address an important

question which is only possible with such genome-wide

transcriptional profiling study of large scale gene disruptions.

If there are genes vulnerable or resistant to have changes in

transcription levels after perturbations to a system, i.e. gene

disruptions, what are their genomic characteristics and what are

the biological insights? Here, the genomic characteristics refer

to phenotypic information, topological position in protein-

to-protein interaction network or transcriptional regulatory

network.
From the above mentioned transcriptional profiling study of

the yeast genome in response to 276 different gene disruptions

(Hughes et al., 2002), the ‘perturbation network’ is defined as a

non-directed bipartite graph of two node groups; a group of

‘genes’ which showed significant changes in transcription level

in the other group of ‘deletion mutants’ and links are made

between nodes from each group based on the significance level

assuming the ‘error model’. This is a non-directed version of the

above mentioned ‘disruption network’ and is made up of 4280

genes and 212 deletion mutants.
We sorted the 4280 genes according to its degree whose

biological meaning is straightforward; how sensitive is the gene

to external perturbations? Therefore we termed the degree as

‘perturbation sensitivity’ of the gene. From the network, we

sliced out the genes with low sensitivity, thus enriching the gene

set with gradually more perturbation sensitive genes to find that

perturbation sensitive genes are usually not essential and their

coding proteins have fewer physical interaction partners and

more transcription factors bind to their upstream sequences.

Further, it is also explored what functional categories are

significantly overrepresented in each perturbation sensitive and

resistant gene set.

2 METHODS

2.1 Definition of ‘perturbation network’

Perturbation network is constructed from the genome-wide tran-

scriptional profiling study of 300 perturbation experiments like

gene deletions or drug treatments in Saccharomyces cerevisiae

(Hughes et al., 2000). The dataset includes mRNA expression profiles

of 6325 yeast ORFs in 276 different single-gene deletion mutant strains*To whom correspondence should be addressed.
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and is available at http://rii.com/tech/pubs/cell_hughes.htm. We

investigated only gene deletion experiments because drug treatments

usually perturb more than one gene and could increase heterogeneity in

the dataset.

A graph is bipartite if the vertices are partitioned in two mutually

exclusive sets such that there are no ties within either set and every edge

in the graph is an unordered pair of nodes in which one node is in one

vertex set and the other in the other vertex set. (Wasserman and Faust,

1994).

Perturbation network is a non-directed bipartite graph where one

vertex set contains genes significantly up or down regulated in deletion

mutants constituting the other vertex set and a link is made between

gene i and deletion mutant j if the expression of gene i is significantly

altered in deletion mutant j.

Based on the ‘error model’ (Hughes et al., 2000) correcting for gene

measurement error and biological noise, P-value is assigned for each

pair of gene and deletion mutant. A total of 4280 genes showed any

significant changes in more than one deletion mutants and 212

deletion mutants affected more than one gene according to the criteria:

P-value<0.01. The original set of 276 deletion mutated genes reflects a

variety of functional categories according to the MIPS (Munich

Information Center for Protein Sequence) functional catalogues

(Hughes et al., 2000; Mewes et al., 2002) and the selected 212 deletion

mutated genes had similar distribution in functional catalogues,

excluding possible bias from the cut-off process (Data not shown).

In matrix notation, perturbation network is represented as matrix

D¼ dij
� �

for gene i and deletion mutant j where,

dij ¼
1, P < 0:01
0, P � 0:01

�

2.2 Perturbation sensitivity (Si)

For each gene i, the perturbation sensitivity (Si) is defined as its node

degree in the bipartite graph.

Si ¼
X
i

dij

which is the number of deletion mutants in which the gene is

differentially expressed. The larger Si value means that gene i is

up- or down-regulated in a larger number of deletion mutants and

highly sensitive and responsive to external perturbations. In the current

dataset, it ranged from 1 to 49.

2.3 Slicing gene group by perturbation sensitivity

We sorted the 4280 genes according to its Si. Then genes with the least

Si’s are shaved out to enrich the group with genes with higher Si’s. Here

we define a gene group with Si’s equal to or higher than m as m-core.

After slicing out genes with Si’s equal to m, (mþ 1)-core remains and is

nested in m-core. Iteratively applying the procedure produces groups of

gradually more perturbation sensitive genes.

2.4 Excess retention

Excess retention (Wuchty and Almaas, 2005) is defined as the degree to

which genes with a certain property A is over or underrepresented in m-

core compared to that in the whole gene group or 1-core. The fraction

of genes with property A in the whole group of N genes is EA
¼NA/N. If

m-core contains Nm genes and the number of genes with property A in

m-core is NA
m, then the excess retention of genes with property A in m-

core is given by

EA
m ¼

NA
m=Nm

� �
NA=Nð Þ

:

3 RESULTS

The perturbation sensitivity is a novel transcriptomic property.
Previous genome-wide studies have characterized a gene with
various genomic properties like the impact on the viability of a

cell in its absence (Winzeler et al., 1999) and topological
position in protein interaction (Uetz et al., 2000) or transcrip-

tional network (Lee et al., 2002).
To uncover the implication of a gene’s transcriptional

sensitivity to external perturbations, we first investigate the

associations between the ‘perturbation sensitivity’ and the
previously well studied genomic characteristics.

3.1 The enrichment of non-lethal genes among

perturbation sensitive genes

At the most basic level, the functional importance of a gene is

defined by its lethality or essentiality (Winzeler et al., 1999).
A gene is usually called lethal (in other words, non-viable or
essential) if its absence leads to death of its deletion mutant and

non-lethal (in other words, viable or not essential) if its absence
does not affect the survival of the cell.

The Saccharomyces Genome Database (http://www.
yeastgenome.org) provides the lethality information of yeast
genes. Of the 4280 genes, 696 genes were lethal and 3214 genes

were non-lethal and the rest had no lethality information.
We studied the excess retention (see methods) of lethal and non-
lethal genes in each m-core. If the perturbation sensitivity and

lethality are not correlated, the ratio of the lethal or non-lethal
genes in each m-core to the expected number would be around

one. Instead, Figure 1 shows the excess retention of non-lethal
genes (with peak of 1.2-fold) while lethal genes are diluted to
0 in cores419.

In a sense, lethal and essential genes might be more likely
to be up- or down-regulated because they participate in more
biological processes and have a longer evolutionary history

(Jeong et al., 2001). But, in our results, the accumulation of

Fig. 1. The excess retention of non-lethal genes among perturbation

sensitive genes.
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non-lethal genes in the higher cores suggests that non-lethal

genes are more liable to show transcriptional changes in

numerous random perturbations on the system while lethal and

essential genes are robust to random perturbations and tolerant

to outside attacks. Despite vigorous interventions like gene

disruptions, genes essential for maintaining the life of the

organism are not easily up- or down-regulated. This accords

with the earlier finding by Albert et al. that the biological

network shows a surprising degree of tolerance against errors

which is attributable to its scale-free nature (Albert et al., 2000).

3.2 The depletion of physical interaction network

hubs among perturbation sensitive genes

The tremendous accumulation of protein interaction data has

made it possible to construct the protein interaction networks

and the network topology has been widely studied (Uetz et al.,

2000). Now the topological position of the proteins coded by

the perturbation sensitive genes in the protein interaction

network is explored using the ‘excess retention’ approach. The

perturbation sensitivity is based on the behavior of individual

gene in transcriptional level and how the property is related

to the molecular interactions in proteome level is a very

interesting issue.

We retrieved from the Saccharomycess Genome Database

(http://www.yeastgenome.org) physical interaction data of

yeast genes. A total of 3736 genes had more than one physically

interacting partners and the number of interactions varied from

1 to 619. It is categorized into three levels or low, intermediate

and high. Two cut-off values, 4 and 17 are arbitrarily chosen to

represent half and upper 15 percentile, respectively.

Figure 2 shows the excess retention of the three categories in

each m-core. Perturbation sensitive gene group is enriched in

genes whose coding proteins have less physical interactions

while proteins coded by genes that show stable expressions

against perturbations have more physically interacting

partners.
Intuitively, if a gene transcript or a protein is interacting with

many other proteins, it is more likely to be affected by external

perturbations because it is linked to many cellular processes.

Instead, our result suggests these physical interaction

network hub-proteins or proteins with large number of

partners, show high stability in transcription levels to such

interventions. They are placed in the periphery in perturbation

network and this well demonstrates that physical interaction

and transcriptional changes are definitely two different layers of

cellular processes.

In Section 3.1, we showed that perturbation sensitive genes

are usually non-lethal. The observations that highly interacting

proteins have an increased tendency to be lethal (Jeong et al.,

2001), coupled with the association between the lethality and

perturbation sensitivity in Section 3.1, make it possible to

presume the result in Figure 2 indirectly. Here, we establish the

direct link between the perturbation sensitivity and protein

interaction topology.
In biological sense, physical interaction network hubs which

are usually essential (Jeong et al., 2001) might be the ‘house

keeping’ genes, as suggested by Yu et al. (Yu et al., 2004). They

are constitutively transcribed and are very resistant to external

perturbations through some kinds of buffering systems

but cause deleterious impact on the individual when affected

by a perturbation.

3.3 Perturbation sensitive genes have more

transcriptional regulators

Recently, transcriptional regulatory networks are constructed

and explored through genome-wide profiling studies like ChIP-

on-Chip, which uses chromatin immunoprecipitation and DNA

microarrays together with computational analysis to map the

genomic sites bound by transcription factors (Lee et al., 2002).

Such technologies have made it possible to study the relation-

ship between transcription factors and downstream genes in a

quantitative way.
Perturbation sensitive genes are, by definition, differentially

transcribed in a variety of environmental challenges, i.e. gene

knockout conditions. Now we address the question if the

observed transcriptional responses are correlated with the

number of transcription factors binding to upstream sequence

of genes.
The YEASTRACT database (‘Yeast Search for

Transcriptional Regulators And Consensus Tracking’, http://

www.yeastract.com) incorporates data from genome-wide

technologies and literatures. It is a web-based service providing

a list of transcription factors for a group of genes and we used

4280 genes as input to get 3017 genes with information on

regulating transcription factors. The number of transcriptional

regulators varied from 1 to 22 and was categorized into

three groups of genes; low, intermediate and high using three

(50 percentile) and seven (upper 10 percentile) as cut-off values.
As shown in Figure 3, perturbation sensitive genes are

controlled by more transcription factors (maximum of more

than 3-fold than expected in ‘high’ group). ‘Intermediate’ group

showed only mild retention with higher m. We come to the

conclusion that perturbation sensitivity is quantitatively corre-

lated with the number of upstream transcriptional regulatory

factors.

Fig. 2. The excess retention of genes with less physically interacting

partners among perturbation sensitive genes.
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3.4 The enrichment of functional categories

In addition to exploring correlations among objective proper-

ties of genes, we also investigated if the group of perturbation

sensitive and insensitive genes has significant proportion of

genes with certain functional annotations. The MIPS database

(http://mips.gsf.de) contains functional catalogues which is a

functional annotation scheme for systematic classification of

proteins from whole genomes (Mewes et al., 2002). And it also

provides on-line tools (http://mips.gsf.de/proj/funcatDB) for

statistical test of significant enrichment of a given gene set in

certain functional categories as compared to the set of whole

genome under the assumption of the hypergeometric distribu-

tion (Ruepp et al., 2004).

Figure 4 gives the distribution of significantly overrepre-

sented functional categories (P-value<0.01) among perturba-

tion sensitive genes (genes nested in the 6-core which is made up

of 831 genes). The most highly perturbation sensitive group is

enriched in genes that belong to the two functional categories,

metabolism and interaction with the cellular environment.

Metabolism associated genes are highly enriched throughout

m-cores and it is natural to suppose that genes participating in

the interaction with the cellular environment are perturbation

sensitive as they should be actively transcribed or repressed

according to changing cellular environments like the deletion of

related genes.

To represent a perturbation resistant or insensitive group,

831 genes, the same size of the 6-core, were randomly sampled

20 times from the gene group with the perturbation sensitivity

(Si)¼ 1 (the group is made up of 1526 genes). The 831 genes had

a high proportion of annotations like protein fate, transcription,

cell fate, cell type differentiation and biogenesis of cellular

components. As shown in Figure 5, these annotations are

exclusive to the annotations of the perturbation sensitive genes.

And the functional categories are essential processes which are

always switched on to keep life go on and it accords with the

above mentioned finding that perturbation resistant genes may

be ‘house keeping’ genes.

4 DISCUSSION

We conclude from the above exploration that perturbation

sensitive genes are usually not essential and have fewer

physical interaction partners and their perturbation sensitivity

is well correlated with the number of upstream binding

transcription factors. Moreover, perturbation sensitive and

resistant genes belong to mutually exclusive functional cate-

gories. It is summarized in Figure 5.

Fig. 4. The distribution of functional categories (P-value<0.01) in

each group of perturbation sensitive (m-core) and resistant group

(Si¼ 1) is shown. If a functional category is significantly over-

represented in a group, then the corresponding rectangle is colored.

The perturbation sensitive group (blue) and resistant group (orange, the

number is the frequency of overrepresentations in 20 random samples

of 831 genes) have mutually exclusive functional annotations.

Fig. 3. The excess retention of genes with more transcription factors

bound to upstream sequence among perturbation sensitive genes.

Fig. 5. Summary of correlations among various properties of yeast

proteins.
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The ‘excess retention’ approach (Wuchty and Almaas, 2005)
well visualizes the tendency of enrichment or depletion of genes
with specific property with the gradual change in perturbation
sensitivity gene sets.

The sensitivity in transcriptional changes of a gene following
random perturbations has been left relatively under-explored
despite being a very interesting and more dynamic property.

Through definition of the ‘perturbation sensitivity’, we add a
novel way of characterizing a gene from a genomic perspective
to the present genetic annotation system. It has definite

biological implications and shows interesting correlations with
the present genomic characteristics leading to new biological
insights. Several studies have discussed the correlation struc-

tures among various genomic characteristics. (Featherstone and
Broadie, 2002; Yu et al., 2004) But our study clearly
demonstrates them using the ‘perturbation sensitivity’ as a
scaffold for unifying various genomic characteristics.
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