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ABSTRACT 
 
Summary: ArrayXPath (http://www.snubi.org/software/ArrayXPath/) is a web-based 
service for mapping and visualizing microarray gene-expression data with integrated 
biological pathway resources using Scalable Vector Graphics (SVG). Deciphering the 
crosstalk among pathways and integrating biomedical ontologies and knowledge bases 
may help biological interpretation of microarray data. ArrayXPath is empowered by 
integrating gene-pathway, disease-pathway, drug-pathway, and pathway-pathway 
correlations with integrated Gene Ontology (GO), Medical Subject Headings (MeSH), 
and OMIM Morbid Map-based annotations. We applied Fisher’s exact test and relative 
risk to evaluate the statistical significance of the correlations. ArrayXPath produces 
Javascript-enabled SVGs for web-enabled interactive visualization of gene expression 
profiles integrated with gene-pathway-disease interactions enriched by biomedical 
ontologies. 
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INTRODUCTION 
 
Cluster analysis is one of the most powerful methods for the exploratory analysis of 
gene expression data. Genes expression clusters based on similarity measures between 
expression profiles have positional associations along the chromosomes (1, 2), exhibit 
common cis-regulatory elements in their upstream regions (3), and are coordinated by 
shared sets of regulators (4). Gene expression clusters can be assigned to the well-
known functional categories of the MIPS classification (5), the GO terms (6) or 
pathway resources (7) using annotations from public databases (3, 8, 9). 
 
ArrayXPath (7) is a web-based application that (i) receives a clustered gene-expression 
profile of any microarray platform in a tab-delimited text format; (ii) automatically 
resolves the microarray probe identifiers (i.e., GenBank accession number, UniGene ID, 
LocusLink ID, official gene symbol, SwissProt ID, or TrEMBL ID); (iii) searches major 
public pathway resources (i.e., GenMAPP, KEGG, BioCarta and PharmGKB 
Pathways); (iv) maps the different identifier sets between microarray probes and 
pathway nodes; (v) tests the statistical significance of the association between gene 
expression clusters and pathways (hence providing an automated annotation of clusters 
with the ranked pathways); (vi) visualizes expression levels onto pathways, and (vii) 
allows web-based user navigation through multiple clusters and pathways enriched with 
animation features, using Javascript-enabled SVG. 
 
Although biological pathways can provide key information about the organization of 
biological systems, relatively small number (i.e. ~3,000) of genes compared to the 
estimated number (i.e. > 30,000) of genes for our species, as reported in our previous 
work (7), do appear in major pathway resources, resulting insufficient coverage for 
genome-wide expression data analysis. Although GO-based annotations give lesser 
information than pathway-based ones, increasingly more gene products are being 
annotated by GO terms, resulting much higher coverage. As of 2005 February, we 
found that 13,949 LocusLink IDs have at least one GO annotations. Therefore, 
integrating lesser-knowledge-higher-coverage GO-based annotations can complement 
more-knowledg-lower-coverage pathway-based annotations for microarray data analysis. 
 
Gene-pathway correlation alone may not be sufficient for deciphering the genomic 
secret of normal and pathological physiology. Integrating not only biological (i.e. GO) 
but also clinical ontologies like the disease nomenclature system supported by MeSH 
can provide further information for genotype-to-phenotype association. OMIM Morbid 
Map provides valuable gene-disease correlations. Integrating drug-pathway correlation 
from PharmGKB Pathways (10) can also improve ArrayXPath, which is intrinsically an 
automatic annotation machine. 
 
We found that pathways had significant and informative crosstalk. Many genes appear 
in multiple pathways. Systematic analysis and interactive visualization of the complex 
crosstalk structures among pathways, pathway nodes (i.e. gene products), and gene 
expression clusters may help understanding gene-pathway correlations. Fig. 1(a) shows 
the concept diagram of new ArrayXPath that integrates the quinta-partite graph 
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structure of cluster, gene, disease, pathway and GO-term associations from multiple 
resources. 
 
Here we present an improved version of ArrayXPath. In addition to the functionalities 
described above, this is a software that (viii) tests the statistical significance of the 
association between gene expression clusters and GO-based annotations to complement 
pathway-based microarray data analysis; (ix) allows users to search disease-related 
pathways; (x) visualizes the global crosstalk of biological pathways by measuring and 
mapping the similarity distances superimposed by the local crosstalk of the subset of 
pathways matched to input gene-expression clusters, and (xi) visualizes the detailed 
local crosstalk through gene-cluster, gene-pathway, gene-disease and gene-GO 
associations using interactive multi-partite graph representations in SVG. OMIM 
knowledge base and drug-pathway correlations from PharmGKB Pathways are also 
tightly integrated to AXP. 
 
INPUT AND OUTPUT 
 
Input 
Input to ArrayXPath is a common tab-delimited text file for a clustered gene expression 
profile: <Probe ID>-<Cluster ID>-[<Expression level at conditioni>]. The first 
column must contain either GenBank accession number, UniGene ID, LocusLink ID, 
SwissProt ID, TrEMBL ID or an official gene symbol. The second column contains the 
cluster ID. The third to ith columns are optional and contain expression levels. 
ArrayXPath does not perform cluster analysis per se. The input format is designed 
primarily for a partitional clustering algorithm (i.e., K-means or Self-Oraganizing 
Maps) but a clustering result from a hierarchical algorithm (i.e., dendrogram) may be 
applied by choosing a threshold carefully. One can search disease-related pathways and 
their correlations by entering a disease name. 
 
Output 
ArrayXPath produces a list of the best-matching pathways and GO terms for each 
cluster with statistical significance scores of non-random association. Relevant 
pathways are listed in ascending order of p-values (and multiple-comparison corrected 
q-values) (11). ArrayXPath provides a summary statistic for the overall mapping 
between input clusters and all pathways and GO terms matched.  
 
If one chooses a pathway among the list, ArrayXPath outputs a Javascript-enabled SVG 
file, color-coded both by expression level and by cluster membership at each pathway-
node level. If one chooses a cluster, ArrayXPath outputs cluster-pathway-disease 
diagram with significantly associated GO terms and OMIM information (Fig. 1(c)). The 
cluster-centric view visualizes the related genes, pathways and diseases by measuring 
the shared membership of gene products. The whole quinta-partite associations (Fig. 
1(a)) can be interactively navigated by choosing one of the cluster, pathway or disease 
nodes from the graph in SVG.  
 
Each node in pathway graph and correlation multi-partite graph is enriched with a 
hyperlink to an automated summary page for the corresponding gene product(s) 
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provided by our integrated database: GRIP (Genome Research Informatics Pipeline, 
http://grip.snubi.org/) (7). 
 
METHODS 
 
Pathway integration and resolving diverse identifiers 
 
ArrayXPath searches publicly available major pathway resources including KEGG, 
GenMAPP, BioCarta and PharmGKB Pathways. We have created a repository of meta-
information by parsing SBML files for KEGG and HTML files for GenMAPP 
(http://www.genmapp.org/MAPPSet-Human/MAPP_index.htm) and BioCarta 
(http://www.biocarta.com/genes/allPathways.asp), and by manually encoding 
PharmGKB pathways (http://www.pharmgkb.org/search/pathway/pathway.jsp). A 
variety of gene-product identifiers including GenBank accession number, UniGene ID, 
LocusLink ID, EC number, official gene symbol, SwissProt ID and TrEMBL ID are 
inconsistently used for the pathway nodes as well as microarray probes, resulting in 
enormous ambiguity in integrating data from different resources. By integrating major 
databases including GenBank, UniGene, LocusLink Homologene, SwissProt, Ensemble, 
UCSC Golden Path and NetAffyx (http://www.affymetrix.com/analysis/index.affx), 
ArrayXPath automatically matches the probe identifiers of microarray data to the 
identifiers of pathway nodes. When a pathway node is a composite type, i.e. consists of 
more than one element, ArrayXPath separately matches and visualizes each probe 
identifier to the corresponding individual element of the composite object. 
 
Table 1 shows the distribution of the pathway nodes identified from KEGG, GenMAPP, 
BioCarta and PharmGKB Pathways for Homo sapiens. We found 1,942 redundant 
nodes representing genes and proteins for the 45 GenMAPP pathways. Among the 
1,454 non-redundant elements, ArrayXPath successfully assigned 1,391 gene products 
(95.7%) to either official gene symbols (n = 1,329; 91.4%), LocusLink ID (n = 39; 
2.7%), or SwissProt ID (n = 23; 1.6%). Only 63 (4.3%) remain unresolved because of 
intractable ambiguity. KEGG has 256 non-composite (i.e. simple) and 121 composite 
elements (i.e. enzymes), containing 256 and 505 gene products, respectively. Among 
the 256 simple-type elements, 21 appear as members of composite type elements. 
Overall, KEGG has 740 unique elements and ArrayXPath successfully assigned all of 
them (100%) either to official gene symbol (n = 720, 97.3%) or LocusLink (n = 20, 
2.7%). PharmGKB Pathways added 133 official gene symbols and 1 LocusLink ID. 
 
Overall, ArrayXPath identified 3,025 gene products for the four major pathways. We 
created a pre-computed association table of these elements to all resolvable IDs and to 
official gene symbols for reliable mapping of incoming microarray-probe identifiers.  
 
Search pathways by disease name in MeSH (PathMeSH) 
 
ArrayXPath allows one to search disease-related pathways. The OMIM Morbid Map 
(http://www.ncbi.nlm.nih.gov/Omim/getmorbid.cgi) contains official gene symbol, alias 
gene symbol and cytogenetic location of disease-related genes with OMIM ID and the 
related disease name. The C category in the 15 branches of MeSH contains disease 
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names and their entry terms with hierarchical structure. We extracted the gene- and 
disease-related information from OMIM and MeSH. We mapped the disease names by 
using exact keyword match method provided by MeSH. We mapped the disease-related 
genes onto the integrated pathway resources by using our integrated database, GRIP, as 
described above. Among the 3,259 official gene symbols resolvable from the Morbid 
Map, we found that 2,395 genes had disease names that could be mapped to MeSH 
disease names through headings or entry terms. We successfully mapped 1,928 genes 
onto both MeSH disease names and pathway nodes (i.e. gene products). It means that 
about 64% (i.e. 1,928/3,025) (Table 1) of the non-redundant nodes in all pathway 
resources of our species have at least one link to human pathophysiology through 
standard disease name(s) in MeSH. 
 
If the input disease name is matched to the corresponding MeSH heading or entry term, 
ArrayXPath outputs the list of the pathways containing the disease-related gene product 
(Fig. 1(b)). ArrayXPath determines the statistical significance of the association 
between a pathway and a disease name in terms of the non-random proportion of 
matched entities. ArrayXPath applies Fisher’s exact test by constructing a 2 × 2 
contingency table containing the two pathway memberships (within and without the 
pathway) as column variables and the disease memberships (within and without the 
disease) as row variables. We used Fisher’s exact test because a large sample 
approximation is inappropriate in the pathway case (a 2 × 2 table often contains a cell 
with expected values < 5). 
 
Visualization of the correlational structure of biological pathways 
 
Visualizing the crosstalk among pathways may reveal important biological 
understanding (12). We created pairwise similarity matrix of pathway distances by 
calculating the ratio of the number of the genes in the intersection divided by that in the 
union of each pair of pathways. Multi-dimensional scaling of the similarity matrix and 
drawing the edges of the pathway pairs above certain similarity threshold create a global 
crosstalk graph among all biological pathways (Fig. 2(a)). ArrayXPath interactively 
visualizes the local crosstalk of the pathways associated with the user-selected clusters, 
superimposedly on the global pathway crosstalk graph (Fig. 2(b)).  
 
ArrayXPath interactively visualizes the detailed local crosstalk. The shared membership 
of gene products in gene-expression clusters, pathways and disease names can be 
captured by multi-partite graph representations in SVG (Fig. 1(a), 1(c)). By selecting a 
node from one view, one can interactively navigate the different views of the whole 
associations. 
 
Mapping GO-based annotations  
 
Among the 33,108 LocusLink IDs (as of 2005 February), we identified 3,025 gene 
products (i.e. ~9%) in major pathway resources (Table 1). Integrating GO-based 
annotations covering 13,949 LocusLink IDs (as of 2005 February) can help filling the 
gaps for pathway-based microarray data analysis. ArrayXPath provides both implicit 
and explicit GO annotations (Fig. 1(c)) (13). While explicit annotation provides the GO 
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terms directly mapped to the members of gene expression clusters, implicit annotation 
considers all ancestor terms from the GO hierarchical tree structure, providing general 
understanding. We applied hypergeometric distribution to evaluate the statistical 
significance of the associations. 
 
DISCUSSION 
 
ArrayXPath is a web-based service for mapping and visualizing microarray gene 
expression clusters with biomedical ontologies and major biological pathway resources 
using SVG. It permits one to input a clustered gene expression data in a tab-delimited 
text format via an Internet connection.  
 
We found that integrating biomedical ontologies including the GO-based annotations, 
disease names supported by MeSH, and the genotype-to-phenotype information from 
OMIM Morbid Map greatly improve the capability of ArrayXPath to interpret gene 
expression profiles. Integrated analysis and interactive visualization of the global and 
local crosstalks among pathways can facilitate system-level understanding of 
microarray gene-expression data. Although we evaluated the statistical significance of 
each association in the present study, combined analysis may improve the inference. It 
is required in the future study to develop a computational method to reconstruct the 
whole correlational structure and extract more biology from gene-expression microarray 
data. Standard web-based integration of a wide range of bioinformatics modules and 
heterogeneous genomic data will obviously help advance biological science. 
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Figure 1. ArrayXPath functions. (a) Gene-cluster, gene-pathway, gene-disease and gene-GO associations 
(solid lines) are the building blocks of the quinta-partite graph representation used by ArrayXPath 
integration. Dotted lines explain how the associations are created. GO and MeSH have their own 
hierarchical organizations and clusters can be organized by profile similarity measures (broken circular 
arrows). (b) PathMeSH returns a list of disease-related pathways with statistical significance scores by 
integrating pathway resources, MeSH disease names, and OMIM Morbid Map. (c) When one chooses a 
cluster, ArrayXPath outputs the cluster-centric view of the associations of related genes, pathways and 
diseases through the shared membership of gene products. The whole quinta-partite associations can be 
interactively navigated by choosing cluster, pathway or disease node from the graph in SVG. ArrayXPath 
also provides GO-based annotation and OMIM information to complement pathway-based analysis of 
gene expression clusters.  
 
 
Figure 2. Pathway crosstalk. (a) Calculating pairwise similarity matrix between each pair of pathways and 
applying multi-dimensional scaling method created the global crosstalk graph of major biological 
pathways. Yellow nodes represent BioCarta, green nodes GenMAPP, red nodes KEGG, and blue nodes 
PharmGKB Pathways (see methods). (b) ArrayXPath interactively visualizes the local crosstalk (i.e. 
purple lines) of the pathways associated with the selected clusters, superimposedly on the global pathway 
crosstalk graph.  
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Table 1. Distribution of pathway–node identifiers among the major pathway resources 

Gene / Protein ID resolution Pathway 
simple compl

ex 
redundant Total OGS LL SP UR

Metabolite Embedded 
pathway 

Free text 
description 

 
KEGG 

 
70 

(256)*
(505)* 

740

 
(121) 

(637)
(469)

(1,106)
740 720 20 0 0 1,896

 
(2,624) 

 
0 

 
(0) 

 
121 (275)

GenMAPP 45 1,454 (1,942) 1,391 1,329 39 23 63 83 (97) 4 (4) 130 (372)
BioCarta 346 1,584 (8,976) 1,584 1,580 4 0 0 0 (0) 50 (141) 18 (53)
PharmGKB 9 134 (189) 134 133 1 0 0 11 (25) 1 (1) 23 (26)
Overall 470 3,025 (12,900) 3,088 2,938 64 23 63 1,990 (2,746) 55 (146) 55 (146)

* There were 21 elements redundant in the simple (256) and composite (505) elements so that 740 unique 
elements were found in the 70 KEGG human pathways.  
Numbers in parentheses are redundant counts. KEGG has 121 composite elements containing 505 
identifiable gene products.  
OGS: official gene symbol, LL: LocusLink, SP: SwissProt, UR: unresolved 
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