¼¿ï´ëÇб³º´¿ø À¯Àüü ÀÓ»ó Á¤º¸ºÐ¼® ÈƷü¾ÅÍ ÀÚ·áºÐ¼® ¿÷¼¥
R for Bioinformatics and Biomedicine
ÀÓ»ó ÀÇ·áÁ¤º¸¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ÅëÇպм®¿¡¼ ¿Ã¹Ù¸¥ Åë°èÇÐÀû µµ±¸ »ç¿ëÀÇ Á߿伺Àº ¾Æ¹«¸®
°Á¶Çصµ Áö³ªÄ¡Áö ¾Ê½À´Ï´Ù. °ø°³ ¼ÒÇÁÆ®¿þ¾îÀÎ R statistical package´Â dzºÎÇÑ
Åë°èºÐ¼® ¶óÀ̺귯¸®¿Í ÀÚ·á󸮸¦ À§ÇÑ ÄÄÇ»ÅÍ ÇÁ·Î±×·¡¹Ö ȯ°æ ¹× ¼öÁØ ³ôÀº ±×·¡ÇÁ ±×¸®±â¸¦ Áö¿øÇÕ´Ï´Ù. ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнǿ¡¼´Â
¹ÙÀÌ¿ÀÁ¤º¸Çаú ÀÇ°úÇÐ ºÐ¾ß¿¡¼ RÀÇ È°¹ßÇÑ º¸±ÞÀ» À§ÇÑ ½Ç½À ¿÷¼¥À» ¸¶·ÃÇß½À´Ï´Ù. º» ±³À°°úÁ¤ÀÌ ½ÇÁúÀûÀÎ »ý¸íÀÇ°úÇÐ
µ¥ÀÌÅÍ¿Í À¯Àüü µ¥ÀÌÅÍÀÇ ºÐ¼®À» À§ÇÑ R È°¿ëÀÇ ±âÃÊ°¡ µÇ±â¸¦ ±â¿øÇÕ´Ï´Ù.
- 2013³â 11¿ù ¼¿ï´ëÇб³º´¿ø À¯Àüü ÀÓ»ó Á¤º¸ºÐ¼® ÈƷü¾ÅÍÀå ±èÁÖÇÑ
ÀÏ ½Ã : 2013³â
12¿ù
27ÀÏ(±Ý)
~ 28ÀÏ(Åä),
¿ÀÀü 9½Ã ~ ¿ÀÈÄ 5½Ã
Àå ¼Ò : ¼¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼°ü 3Ãþ Àü»ê½Ç½À½Ç
ÁÖ ÃÖ : ¼¿ï´ëÇб³º´¿ø À¯Àüü ÀÓ»ó Á¤º¸ºÐ¼® ÈƷü¾ÅÍ
ÁÖ °ü : ¼¿ï´ë ½Ã½ºÅÛ¹ÙÀÌ¿ÀÁ¤º¸ÀÇÇÐ ¿¬±¸¼¾ÅÍ, ¼¿ïÀÇ´ë Á¤º¸ÀÇÇнÇ
¡á ÇÁ·Î±×·¥ (Day 1, 27ÀÏ)
½Ã °£
|
ÁÖ Á¦ |
° »ç |
9:00 ~ 9:10 |
µî
·Ï |
9:10 ~ 9:30 |
Introduction
to R |
±èÁÖÇÑ |
9:30 ~ 10:40 |
Starting with
R
- R Installation, R packages, workspace
-
Data type and structure
-
Basic R functions: built in functions
-
File read and write |
ÀÓÀçÇö, ¼Èñ¿ø |
10:50 ~ 12:20 |
Data
manipulation with R
- Vector, matrix
-
Index, splice, conditional statement
-
Data management: sorting, merging, reshaping
-
Apply functions
-
User defined function |
ÀÓÀçÇö, ¹ÚÁöÇý |
12:20 ~ 13:30 |
Áß ½Ä |
13:30 ~ 14:40 |
Statistical Analysis with Biomedical Data I
- Distributions
- Parametric tests
- Non-Parametric stats |
¹ÚÂùÈñ, ÀÓ¿µ±Õ |
14:50 ~ 16:00 |
Statistical Analysis with Biomedical Data II
- Correlation
- Regression
- ANOVA |
¹ÚÂùÈñ, ¾È¼±ÁÖ |
16:10 ~ 17:20 |
Advanced R
graphics and ggplot2
- Plot, histogram, qqplot, boxplot
- Layout, axis, legend and text
- ggplot2: scatterplot, histogram, boxplot, barplot, density plot
- Error bar, line graph |
¼Èñ¿ø, ±èÁÖ¿¬ |
¡á ÇÁ·Î±×·¥
(Day 2, 28ÀÏ)
½Ã °£
|
ÁÖ Á¦ |
° »ç |
9:10 ~ 9:30 |
Machine
Learning Algorithms for Biomedical Informatics |
±èÁÖÇÑ |
9:30 ~ 10:40 |
Microarray Data Analysis I
-
Introduction to Microarray Data
-
Normalization methods |
À̼ö¿¬,
¹é¼ö¿¬ |
10:50 ~ 12:00 |
Microarray Data Analysis II
- Identifying DEG: t-test, SAM
-
Volcano plot
-
FDR |
À̼ö¿¬,
¹é¼ö¿¬ |
12:00 ~ 13:10 |
Áß ½Ä |
13:10 ~ 14:20 |
Classification using R
-
K-Nearest Neighbor
- Support Vector Machine
- Logistic regression
- Feature selection |
¼Èñ¿ø,
¹ÚÂùÈñ |
14:30~ 15:40 |
Evaluation
and Validation
- Cross validation
- Train/validation/test set split
- Empirical p-value, permutation test
- Multiple testing
- Mean squared error rate |
¼Èñ¿ø,
±è±âÅ |
15:50 ~ 17:00 |
Case
study: association of BRCA1 and BRCA2 mutations with
survival in ovarian cancer (JAMA 2011)
- DEG extraction from RNA-seq data using TRAPR
- Clustering (K-means, hierarchical)
- Correlation analysis between methylation and expression
data
- Survival analysis |
ÀÌ°èÈ,
¼Èñ¿ø |
Àå ¼Ò : ¼¿ï´ë ÀÇ°ú´ëÇÐ ÀÇÇеµ¼°ü 3Ãþ Àü»ê½Ç½À½Ç
±³ Åë : ÁöÇÏö 4È£¼± ÇýÈ¿ª 2¹ø Ãⱸ·Î ³ª¿À¼Å¼¼ ±æÀ» °Ç³Ê¼Å¾ß ÇÕ´Ï´Ù. (3¹ø Ãⱸ °ø»çÁß)
ÁÖ Â÷ : ÁÖÂ÷±ÇÀ» ÆǸÅÇÏÁö ¾Ê´Â °ü°è·Î °¡±ÞÀû ´ëÁß±³ÅëÀ» ÀÌ¿ëÇϽñ⠹ٶø´Ï´Ù.
¡¡
|