# **TRAPR :** Total RNA-seq Analysis Package for R User's Guide

JH Lim, SY Lee,

First edition 3 September 2012

# TRAPR topics documents

| 1. Introduce TRAPR                  |
|-------------------------------------|
| 2. Start TRAPR1                     |
| 2.1 Set up TRAPR package in your R1 |
| 2.2 Previous set up packages1       |
| 2.3 Loading TRAPR package1          |
| 2.4 Format of input file1           |
| 2.5 Sample data1                    |
| 2.6 Start TRAPR analysis1           |
| 3. Reference1                       |

# 1. Introduce TRAPR

RNA-Seq, is a standard technology for measuring gene expression at an unprecedented accuracy. Numerous Bioconductor packages have been developed for statistical analysis of RNA-Seq data. However, those tools focus on specific aspects of the data analysis pipeline and are hard to integrate appropriately with each other because of their ununified data structure and processing methods. They also lack visualization methods to confirm data integrity and process. Here, we present an R based RNA-Seq analysis pipeline TRAPR, an integrated tool including statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, filtering of low quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines TRAPR is written in R (as of version 2.15) and is available at http://www.snubi.org/software/trapr

# 2. Start TRAPR

- \* Our manual was made based on window 7
- 2.1 Set up TRAPR package in your R
- 2.2 Previous set up packages

TRAPR must be needs some R packages(vsn, preprocessCore, edgeR, gridExtra, ggplot2, reshape2). We will show description of package setup method. For example, we explain vsn.



# Fig1 Dependent packages installation

- > biocLite('vsn')
- > biocLite('preprocessCore')
- > biocLite('gridExtra')
- > biocLite('ggplot2')
- > biocLite('reshape2')

# 2.3 Loading TRAPR package

> library(TRAPR)

# 2.4 Format of input file

TRAPR input file consist of Tab-deliminated text file. Column is sample list. Row is gene list. Each cell is filled gene expression values(Fig2).

| Gene       | 1017-NOR  | 1079-NOR  | 110-NOR   | 1199-NOR  | 1207-NOR  | 1264-NOR  |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1/2-SBSRNA | 1.05316   | 1.12635   | 1.16598   | 0.903904  | 1.388     | 1.7264    |
| A1BG       | 1.58885   | 1.53534   | 1.42561   | 1.45638   | 2.60126   | 1.46374   |
| A1BG-AS1   | 0.813991  | 1.18167   | 0.549843  | 0.893526  | 1.82539   | 0.835946  |
| A1CF       | 0         | 0         | 0         | 0.0512491 | 0         | 0.02684   |
| A2LD1      | 1.47371   | 1.40145   | 1.66409   | 1.50761   | 0.89793   | 3.16842   |
| A2M        | 677.94    | 788.356   | 555.677   | 536.844   | 299.616   | 789.546   |
| A2ML1      | 0.0461678 | 0.0332678 | 0.0441994 | 0         | 0.0242496 | 0         |
| A2MP1      | 0.161584  | 0         | 0.151889  | 0         | 0.204479  | 0.219432  |
| A4GALT     | 6.09765   | 6.41299   | 2.60222   | 4.72684   | 4.70813   | 3.9633    |
| A4GNT      | 0.306902  | 0         | 0.501595  | 1.12183   | 0.395527  | 0.266301  |
| AA06       | 0         | 0         | 0         | 0         | 0         | 0         |
| AAA1       | 0.130131  | 0         | 0         | 0         | 0         | 0         |
| AAAS       | 8.66273   | 11.1746   | 12.4727   | 17.3145   | 20.0061   | 14.5962   |
| AACS       | 4.82528   | 4.76136   | 5.15812   | 9.67915   | 6.27222   | 5.8261    |
| AACSP1     | 0.163496  | 0.142302  | 0.516818  | 1.56209   | 0.420916  | 0.0664654 |
| AADAC      | 14.6518   | 4.90271   | 9.24786   | 17.3143   | 3.16036   | 20.1152   |
| AADACL2    | 1.91869   | 0         | 0.113368  | 0.964742  | 0         | 0.165812  |
| AADACL3    | 0         | 0         | 0.047547  | 0         | 0         | 0         |
| AADACL4    | 0.112633  | 0.131725  | 0         | 0.0943328 | 0.0909002 | 0         |
| AADAT      | 4.43236   | 3.92109   | 5.01229   | 3.6641    | 3.4742    | 5.99568   |
| AAGAB      | 12.5497   | 11.6327   | 11.1433   | 13.3532   | 9.16678   | 12.4696   |
| AAK1       | 2.6064    | 2.49532   | 3.17003   | 2.4327    | 2.15502   | 2.50611   |

## Fig2. input format of TRAPR

#### 2.5 Sample data

Our sample data file name is 'sample.txt'. This file contained in TRAPR. The origin of sample.txt is breast cancer data from TCGA. It consist of 9 normal tissue cancer sample and 10 cancer sample using RNA-seq technology and It's value is FPKM(Fig3).

Gene
Cancer2
Cancer3
Cancer4
Cancer5
Cancer6
Cancer7
Cancer6
Normal1
Normal2
Normal3
Normal4
Normal6
N

#### Fig3 sample.txt in TRAPR

#### 2.6 Start TRAPR analysis

## 2.6.1 Data Manipulation

Sample <- TRAPR.Data.ReadExpressionTable('sample.txt', sep = '\t', Exp1 = c(1:9), Exp2 = c(10:19), Tag = c('Normal', 'Cancer'))

Function loading sample file is TRAPR.Data.ReadExpressionTable. The code component explain showing Fig3. More Information in reference manual.





## Fig4 sample loading code & example

Sample position (green color) is description for sample column position. Tag (blue color) is description for sample labels. Loaded sample data is saving 'Sample' value and after using function of filtering and normalization. More Information in reference manual.

2.6.2 Filter

| lue name                                        | Zero filer function                                          |  |
|-------------------------------------------------|--------------------------------------------------------------|--|
| Sample <- TRAP                                  | R.Filter.ZeroValue(Sample)                                   |  |
|                                                 |                                                              |  |
| R Console                                       |                                                              |  |
| <pre>&gt; Sample = TRA<br/>Filter for Zet</pre> | APR.Filter.ZeroValue(Sample)<br>ro values                    |  |
|                                                 | appoint the for all appoint                                  |  |
| 26 genes have                                   | zero values for all samples                                  |  |
| 26 genes have<br>15 genes have<br>12 genes have | zero values for Expl samples<br>zero values for Exp2 samples |  |



> Sample <- TRAPR.Filter.ZeroValue(Sample)

Remove zero values from sample file. TRAPR provieds 6 kinds of filter condition ('Filter for Gene List', 'TRAPR.Filter.LowVariance', 'TRAPR.Filter.LowExpression', 'TRAPR.Filter.SampleDeletion', 'TRAPR.Filter.GeneDeletion'). If user want other function just typing replace 'TRAPR.Filter.ZeroValue'(read color). More Information in reference manual.

2.6.3 Normalization

| ′alue name<br>↑      | Normalization function                   | Kinds of normalization method |
|----------------------|------------------------------------------|-------------------------------|
| nSample              | <- TRAPR.Normalize(San                   | nple, Method = 'Quantile')    |
| E P Consola          |                                          |                               |
| > nSamp.<br>Quantile | le = TRAPR.Normalize(<br>e Normalization | Sample, Method='Quantile')    |
| 4                    |                                          |                               |

Fig6 Normalization function code & example

# > nSample = TRAPR.Normalize(Sample,Method='Quantile')

TRAPR provide 4 method for normalization ('UpperQuartile', 'Quantile', 'Median', 'Mean'). If you needs another function, just write method name replace 'Quantile'(purple color).

# 2.6.4 Data Visualization

TRAPR provide pre-processing (filtering + normalization) result visualization. Data visualization function include 5 kinds of plots(Fig7).



# Fig7 Data visualization function code & example



Fig8 Result example plot of data visualization

> TRAPR.DataVisualization(nSample, type\_of\_plot = 'ALL', logged = FALSE)

## 2.6.5 Statistical Test

TRAPR provide 4 method for statistical test ('ttest', 'wilcoxon', 'edgeR', 'FC'). If you needs another function, just write method name replace ' ttest '(purple color). TRAPR also provide adjust test method('holm', 'hotchberg', 'hommel', 'bonferroni', 'BH', 'BY', 'fdr', 'none').



Fig9 Statistical Test function code & example

# 2.6.6 Result Visualization

TRAPR provide Result plot of after statistical test. We provide 2 kinds of plots (Heatmap, volcano plot)(Fig11).



Fig10 Result visualization function code & example



Fig11 Result example plot of result visualization

> TRAPR.ResultVisualization(tnSample, type\_of\_plot='ALL')

2.6.7 Out-print of DEG Result file

TRPR provide out-print your DEG result file in your directory. User just typing file name(blue color) in code.



Fig12 Out-print of DEG Result file function code & example

TRAPR.Data.DEGResulttoFile(tnSample, FileName = 'Result.txt')

# 3. Reference

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data, Genome biology, 11, R106.

Auer, P.L., Srivastava, S. and Doerge, R.W. (2012) Differential expression--the next generation and beyond, Briefings in functional genomics, 11, 57-62.

Costa, V., et al. (2012) RNA-Seq and human complex diseases: recent accomplishments and future perspectives, European journal of human genetics : EJHG.

Garber, M., et al. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq, Nature methods, 8, 469-477.

Gentleman, R.C., et al. (2004) Bioconductor: open software development for computational biology and bioinformatics, Genome biology, 5, R80.

Hardcastle, T.J. and Kelly, K.A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data, BMC bioinformatics, 11, 422.

Langmead, B., Hansen, K.D. and Leek, J.T. (2010) Cloud-scale RNA-sequencing differential expression analysis with Myrna, Genome biology, 11, R83.

Robinson, M.D., McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26, 139-140.

Sultan, M., et al. (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome, Science, 321, 956-960.

Tarazona, S., et al. (2011) Differential expression in RNA-seq: a matter of depth, Genome research, 21, 2213-2223.

Wang, L., et al. (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 26, 136-138.

Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics, Nature reviews. Genetics, 10, 57-63.