

UNSUPERVISED LEARNING FROM COMPLEX DATA :
THE MATRIX INCISION TREE ALGORITHM

J u H a n K i m , M . D . , P h . D .

Children's Hospital Informatics Program, Children's Hospital, Harvard Medical School
300 Longwood Avenue, Boston, MA 02115, USA, juhan_kim@harvard.edu

Luc i la Ohno- M a c h a d o , M . D . , P h . D .

Decision Systems Group, Brigham and Women's Hospital, Harvard Medical School
75 St. Francis Street, Boston, MA 02115, USA, machado@dsg.harvard.edu

I s a a c S . K o h a n e , M . D . , P h . D .

Children's Hospital Informatics Program, Children's Hospital, Harvard Medical School
300 Longwood Avenue, Boston, MA 02115, USA, issac_kohane@harvard.edu

Analysis of large-scale gene expression data requires novel methods for knowledge discovery
and predictive model building as well as clustering. Organizing data into meaningful structures
is one of the most fundamental modes of learning. DNA microarray data set can be viewed as a
set of mutually associated genes in a high-dimensional space. This paper describes a novel
method to organize a complex high-dimensional space into successive lower-dimensional
spaces based on the geometric properties of the data structure in the absence of a priori
knowledge. The matrix incision tree algorithm reveals the hierarchical structural organization of
observed data by determining the successive hyperplanes that 'optimally' separate the data
hyperspace. The algorithm was tested against published data sets yielding promising results.

1. Introduction

A general question in many research areas is how to organize observed data into
meaningful structures. DNA microarray technology constitutes a challenge to
biomedical researchers, who wants to extract important biological information
from the mRNA expression data set of very high dimensionality. Increasing
number of methodologies for functional genomic clustering are being introduced
to explore the extensive (and largely unlabeled) genomic data sets.

Cluster analysis involves the utilization of a collection of different algorithms
to create hypothesized clusters. In exploratory phases of research, cluster analysis
can be used to explore the underlying structure of the data and generate hypotheses.
Because cluster analysis is essentially an exploration of the internal structural
organization of observed data, there may be no single 'best' set of clusters or 'gold
standard' and clustering algorithm is categorized as unsupervised learning.

In functional genomics, a typical first step in genomic data exploration is to
examine the expression fold-differences before and after certain interventions.
Genes with fold differences greater than a given threshold are considered clustered
with the intervention1,2.

Another way to approach the problem is to utilize algorithms that
comprehensively compare all objects against each other to build either
phylogenetic-type hierarchical trees 3 , 4 or other graphical representation of
clusters, such as relevance networks using a variety of similarity or distance
metrics: Euclidean distance, correlation coefficients, or mutual information5.
Hierarchical tree clustering joins similar objects together into successively larger
clusters in a bottom-up manner (i.e., from the leaves to the root of the tree), by
successively relaxing the threshold of joining objects or sets. The relevance
networks take the opposite strategy. It starts with a completely connected graph
with the vertices representing each object and the edges representing a measure of
association and then links are increasingly deleted to reveal 'naturally emerging'
clusters at a certain threshold.

Another category of algorithms to explore functional genomic data can be
classified as partitional clustering algorithms, such as K-means analysis and
nearest neighbor clustering, which minimize within-cluster scatter or maximize
between-cluster scatter5. Self-organizing maps (SOM), an artificial neural network
learning algorithm6, was demonstrated to be capable of finding meaningful clusters
from functional genomic data7,8.

This paper describes a novel unsupervised learning method to organize
complex high-dimensional data space into successive lower-dimensional spaces
based on a straightforward geometric property of the data structure in the absence
of a priori knowledge. It uses a partitional clustering approach, as it determines the
successive hyperplanes that 'optimally' separate observed data and reveal its
internal hierarchical organization.

2. Method

In theory, the partitioning problem can be viewed as the simple process of
selecting a criterion, evaluating it for all possible partitions, and selecting the
partition that optimizes the criterion. However, even after we define a
mathematically sound and intuitively appealing criterion, the number of the
partitions is the astronomical Stirling number of the second kind9,10. For example,
the number of possible combinations to create 4 clusters from 19 objects is
11,259,666,000 and bipartite clustering of N objects roughly explodes to 2N-1.
Exhaustive enumeration of the whole space is clearly not computationally feasible.

In the matrix incision tree algorithm, we first define a high-dimensional space
of observations and its incisional hyperplanes that can separate the data space into
sub-spaces. Then we try to find the 'optimal' incisional hyperplane based on a
geometric criterion. To manage the combinatorial explosion of finding the
'optimal' incisional hyperplane, we have developed a representation to represent

the partitioning problem as a much simpler matrix incision task, and devised an
unsupervised learning algorithm, the matrix incision tree algorithm, to find the
'optimal' hyperplane.

2.1 Data Hyperspace and Incisional Hyperplanes

Figure 1 illustrates data hyperspace and incisional hyperplanes. In the completely
connected graphs, the vertices represent objects and the edges represent links. In
general, coding N objects in such a way that the distance between any two objects
is equal requires a representation in (N-1)-dimensional space. For example,
representing four vertices and all the six (4*3/2) edges of equal length is only
possible in more than 3-D space but not on 2-D plane or 1-D line (Fig. 1c). The
requirement of (N-1)-dimensional-space to code N objects also applies when the
distances between objects are all different.

Infinite N-dimensional space is
separable by infinite (N-1)-dimensional
space. For example, plane (2-D) is separable
by line (1-D) and 3-D space is separable by
plane (2-D) (Fig. 1b and 1c).

In general, N objects and their
geometric relationships can be fully
represented in (N-1)-dimensional
hyperspace and are separable into two
lower-dimensional sub-spaces by a set of
(N-2)-dimensional incisional hyperplanes.
When a hyperplane separates N objects into
two subgroups with m and n objects
(N=m+n), the plane deletes m*n links
among the total N(N-1)/2 links and there are
2N-1-1 such incisional hyperplanes.

2.2 Object Link Strength Matrix

To manage complex observations like mRNA expression data, we can view
each gene or array (i.e., cell line) as an object. The association between genes or
arrays represents the link strength between two objects. In that way, we can create
a comprehensive N-by-N object link strength matrix for N genes or N arrays. The
average link strength for a group of objects is defined as the mean strength of all
links,

Within-group average link strength = ∑iLi / {N(N-1)/2}

(a)

(b)

(c)

(d)

Figure 1. Data hyperspace and incisional
hyperplanes. (a) Two objects can be arranged in
1-D 'line' space and are separable by 0-D 'point'
space. (b) Three objects can be arranged in 2-D
plane and are separable by 1-D line. (c) Four
objects require 3-D space and are separable by
2-D plane. (d) Seven objects in 6-D hyperspace
separated by 5-D hyperplane. Note that it is a
severely distorted 3-D representation of the 6-D
hyperspace, where all the 21 ((7 * 6)/2) links
can have equal Euclidean length. The incisional
hyperplane deletes 12 (4 x 3 = 12) links and
only 9 (4x3/2 + 3x2/2) links will remain in the
separated sub-spaces.

Similarly, average link strength between two groups is defined as the mean strength
of all between-group links,

Between-group average link strength = ∑iLi / (m * n).
N: number of objects within the group
L: link strength of the ith link
m, n: number of objects in each group (N=m+n)

2.3 Matrix Incision Index (MII)

Figure 2 is an equivalent but much more
manageable representation of the hyperspace
partitioning problem discussed in Figure 1.
An (N-1)-dimensional space containing fully
connected N objects can be represented as an
N-by-N object link strength matrix. The
rectangular area (a) in Figure 2 represents an
incisional hyperplane that separates the N
objects into two sub-spaces of m and n
objects represented by the triangular areas
(b) and (c), respectively.

Therefore, the 'optimal' partitioning problem of data hyperspace becomes a
matrix incision problem of finding the rectangular area, (a), representing the
'optimal' incisional hyperplane with the minimum loss of link strength that
produces the maximum link strengths within the resultant sub-spaces represented
as the two triangular areas, (b) and (c). Matrix incision index (MII) is defined as the
ratio of gain (i.e., the weighted mean of the within-group average link strengths of
the two separated sub-spaces) to loss (i.e., the between-group average link strength
for the incisional hyperplane) (see Fig. 2), as follows:

MII = {(m / (n+m)) * b + (n / (n+m)) * c} / a
 m: number of objects in group 1
 n: number of objects in group 2
 a: between-group average link strength between groups 1 and 2
 b: within-group average link strength of group 1
 c: within-group average link strength of group 2

Although the matrix representation of hyperspace and hyperplanes makes the
problem much simpler, it is worth noting that it is rather deceptively simple
because we still have to manage the complicated 2-dimensional sorting of the rows
and columns of the object link strength matrix as well as the N-1 possible
rectangular areas under the diagonal line to correctly determine the 'optimal'
incisional hyperplane. Hence, we need a computational algorithm to find the
correct arrangement of objects in the matrix that returns the highest MII before we
can obtain an analytic solution for this problem.

Group 1, m

Figure 2. Matrix representation of data hyperspace
and incisional hyperplane .
Matrix Incision Index (MII)

= {(m / (n+m)) * b + (n / (n+m)) * c} / a

aa

bb

cc
Group 2, n

2.4 Geometric Aspect of Matrix Incision Index

Assume that the six objects in Figure 3 are completely connected with each other
and have seven strong (r2 = 0.8, solid lines) and eight weak (r2 = 0.1, hidden lines
in a completely connected graph) links (i.e., total 15 = 6*5/2 = 7 + 8). The broken
lines represent four hyperplanes that separate the graph into two partitions. As
shown in Figure 3, the magnitude of MII of incisional hyperplane (broken lines)
captures the intuitive sense of 'optimality' of partitioning of the completely
connected graph in hyperspace. The intuitively-most-appealing incisional
hyperplane (a) corresponds to the highest MII (4.4) and the most unappealing
hyperplane (d) corresponds to the lowest MII (0.64) among the four examples (out
of 31 (2

6-1
-1) possible planes). The hyperplanes (b) (MII = 1.8) and (c) (MII = 1.0)

show intermediate relevance.

2.5 Matrix Incision Tree Algorithm

We have devised an unsupervised machine learning algorithm to find the 'optimal'
matrix incision hyperplane with the highest MII (Fig. 4).

Basic Matrix Incision Tree Algorithm

Step 1: Determining computational tolerance level: If a system can comfortably compute 2N-1 MII's for a

given object link strength matrix (see section 2.2), the computational tolerance level of the system
for an exhaustive enumeration of all possible combinations of bipartite partitioning of N groups of
objects (2N-1) will be N.

Step 2: Developing 'seed' clusters: Most of the clustering algorithms tend to generate similar clusters. We
created small representative 'seed' clusters up to the system's tolerance level (N) using available
clustering algorithms such as K-means and SOM (see figure 4).

Step 3: Trimming outliers of 'seed' clusters: We applied a very simple strategy of trimming 20% of the
objects with the lowest average link strength (i.e., between each object and all the others in the
corresponding 'seed' cluster). It is because the central cores of the 'seed' clusters are likely to be
relevant as the seeds of creating 'candidate' partitions in the following steps.

aa
bb cc dd

Figure 3. Geometric property of matrix incision index (MII). The
magnitude of MII of incisional hyperplane (broken lines) seems to
capture the intuitive sense of 'optimal' partitioning of the completely
connected graph in high dimensional space.

Average loss Weighted average link strength MII
a. (0.8 + 0.8)/9 = 0.18 0.5(0.8) + 0.5(0.8) = 0.8 4.4
b. (1.6 + 0.6)/8 = 0.275 0.33(0.8) + 0.67(0.54) = 0.5 1.8
c. (1.6 + 0.3)/5 = 0.38 0.2(1) + 0.8(0.45) = 0.38 1.0
d. (3.2 + 0.4)/8 = 0.45 0.33(0.1) + 0.67(0.45) = 0.28 0.64

Shown links: r 2 = 0.8
Hidden links: r 2 = 0.1

Broken lines: incisional hyperplanes

Figure 4. Matrix incision tree algorithm.

2-D sorting Determine tolerance

Form seed clusters

Trim seed clusters

Partitioning of the
trimmed seed clusters

Trim the partitions

Voting the trimmed

Select the 'optimal'
partition

Iterate above to build
hierarchical tree

Trimmed 'seed' clusters

hyperplane
search

Step 4: For each enumeration of binary partitioning of the 'trimmed-seed' clusters of step 3 (i.e., for each of
the 2N-1 binary partitioning of N 'trimmed-seed' clusters),

4.1: Trimming outliers of partitions: Using the same strategy with step 3, trim 20% of the most loosely
linked objects for both partitions (created by fusion of the 'trimmed-seed' clusters).

4.2: Generating 'candidate' binary partitions by reassigning the 'trimmed' objects: For each object that
was trimmed in steps 3 and 4.1 (36%, 1*0.2 + 0.8*0.2), calculate and compare the between-group
average link strengths between the object and each of the two 'trimmed' partitions of step 4.1
and assign the object to the partition with the higher average link strength.

4.3: Measuring MII for the 'candidate' binary partitioning generated in step 4.2
Step 5: Choosing the 'optimal' partitioning: Select the 'candidate' binary partitioning (generated in step 4.2)

with the highest MII (measured in step 4.3) among all the enumerations in step 4.
Step 6: Iterate step 2 to step 5 for the resultant subgroups (by the 'optimal' partitioning selected in step 5)

successively down to individual leaves (i.e., objects), thereby creating the whole hierarchical tree.

The results described in the present study were all made with the basic matrix
incision tree algorithm with 20 'seed' clusters and 20%-trimming strategy. The
algorithm performed reasonably well with more than 9 'seed' clusters and 10-50%
of trimming rate. A variety of sophistication of the algorithm such as cleverer
creation of 'seed' clusters, better trimming strategy considering the distribution of
link strengths, incremental trimming-and-reassignment for refined determination
of 'optimal' partitioning, and backtracking to ensure the hierarchy of the incisional
hyperplanes were tested and will be described elsewhere.

2.6 Tree Learning and Tree Traversal for Classification

The matrix incision tree algorithm is essentially an unsupervised learning
algorithm that organizes observed data by determining the hierarchical nature of
successive 'optimal' incisional hyperplanes purely based on the internal
organization of the data structure. However, when we build a tree with a labeled
data set without using the label information, the relationship between the labels and
the resulting tree structure can be systematically applied to explore unseen
observations.

Tree traversal is a successive process of assigning a traversing object with the
closer branch at the level of each node starting from the root to the leaves of the
tree. It is useful to consider it a type of nearest neighbor classification, applied at
each branching point. The tree traversal index (TTI) is defined as the
between-group average link strength involving two groups: (i) the traversing object,
and (ii) the cluster represented by each branch. At each node, the traversing object
moves to the branch with the higher TTI:

TTI = 1/N (Σ i L i)
N: number of objects in the corresponding branch.
Li: link strength between traversing object and the ith object in the branch.

A measure of homogeneity of each branch can be used to determine whether
to stop or go further down the tree.

2.7 Evaluation Data Sets

Although the matrix incision tree algorithm is primarily designed for unsupervised
learning, well known, fully labeled, and publicized data sets can be used to evaluate
its performance and characteristics. We have selected the Fisher's iris flower data
set11 as a simple and exhaustively utilized sample, and Golub's Leukemia mRNA
expression data set9, a real genomic sample to illustrate the performance of our
algorithm.

The Fisher's iris data set consists of 150 observations of three species of Iris
flowers (50 Iris Setosa, 50 Iris Vesicolor, and 50 Iris Virginica) and 4
discriminating measurements (petal and septal length and petal and septal width).
The square of Pearson's correlation coefficient, r2, was calculated with the four
measurements and used as the link strength between objects. Many supervised and
unsupervised learning algorithms have been tested against this data set. Golub's
Leukemia data set has 6,817 human gene expression profiles of 74 cell lines (38
in training and 34 in test data sets, http://waldo.wi.mit.edu/MPR/data_set_ALL
AML_train.txt, data_set_ALL_AML_independent.txt) of acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL). Cancer cells were treated as
objects and the square of correlation coefficients between gene expression
profiles were used as object link strengths.

3. Result

3.1 Fisher's Iris Data

Figure 5 shows the matrix incision tree from the whole 150-case iris data. The
first incisional hyperplane separated all Setosa perfectly from the other categories.
The next plane separated Vesicolor and Virginica with five errors. Two Virginica's
were clustered with 48 Vesicolor's and three Vesicolor's with 47 Virgnica's. Thus,
the overall accuracy of relevant clustering with this three-group example was 97%
(145/150). Half-split method was used to test the reliability of the method by
splitting the 150 iris flowers into two subgroups with 50 and 100 cases, The
overall accuracy of relevant clustering was 96% (48/50) and 98% (8/100),
respectively (Fig. 6). All of the four errors (cases 66, 81, 40, 77) in the half-split
study were also found among the five errors (cases 9, 40, 66, 77, 81) in the study
with the whole data set (Fig. 5).

To test the learning performance we used the same split groups as training and
test sets and also in reverse. After building a matrix incision tree with the training

set, the complementary test set was put into the tree and classified by tree traversal
method (Fig.7 and 8). Accuracy of classification for the 100-training-50-testing
sample was 92% (46/50) and for the 50-training-100-testing sample was 97%
(97/100). Moreover, the six misclassified objects in the first study (Fig. 7) were
all found among the seven misclassified ones in the opposite study (Fig. 8).

Self-tree traversal method (a tree traversal process for objects through its own
tree) was also applied. The tree built with the whole 150 objects with five
misclassified ones (9, 40, and 66, 77, 81) shown
in Figure 5 returned one more misclassified
ones (9, 12, 40, and 66, 77, 81) after self tree
traversal. However, the original two
misclassified ones (40 and 77, Fig. 6a) in the
tree with 100 objects were reduced to one (77),
and the original four (9, 12, 66, 81, Fig. 6b) in
the tree with 50 objects were reduced to two (66,
81).

One of the strengths of matrix incision tree
that represents the structure of the successive
'optimal' incisional hyperplanes, when compared

0

2

4

6

8

10

12

14

16

0 10 20 30 40

M
ea

n
nu

m
be

r
of

 m
is

cl
as

si
fie

d
ob

je
ct

s

Number of objects in the branches of the three iris classes

Figure 9. Mean number of misclassified objects with
increasing number of objects in the branches of matrix
incision tree. Randomly selected N objects equally
from each of the three iris classes were assigned to
their corresponding branches of the matrix incision tree
(Fig. 5). Result from 100 repetitive experiments for
each N demonstrates that the mean classification error
decreases and forms a plateau with increasing number
of objects in the branches of matrix incision tree.

Iris setosa: 101-150
Iris vesicolor: 51-100
Iris virginica: 1-50

50 : 0
setosa

48 : 2
vesicolor

47 : 3
virginica

1.045

1.97
97%

9, 40 66, 77, 81

17: Iris setosa
17: Iris vesicolor
16: Iris virginica

17 : 0
setosa

15 : 0
vesicolor

16 : 2
virginica

96%
1.94

1.04

66,81

33: Iris setosa
33: Iris vesicolor
34: Iris virginica

33 : 0
setosa

32 : 1
vesicolor

33 : 1
virginica

98%
2.06

40 77

1.05

a) b)

100 train set

33 : 0
setosa

32 : 1
vesicolor

33 : 1
virginica

50 test set

100%
setosa

15 : 2
vesicolor

14 : 2
virginica

92%

40 77 9, 12 66, 81

2.06

1.05

50 train set 100 test set

100%
setosa

31 : 1
vesicolor

33 : 2
virginica

97%

40 59, 779, 12 66, 81

100%
setosa

15 : 2
vesicolor

14 : 2
virginica

1.94

1.04

Figure 5. Matrix incision tree from Fisher's Iris data set.
The matrix incision algorithm correctly clustered 97%
(145/150) of the cases. The numbers next to intermediate
branches are MII's and the lists of numbers next to
terminal leaves are the numbers of the misclassified cases.

Figure 6. Matrix incision trees from half-split Fisher's Iris
data set into 100-case and 50-case subgroups. Ninety-six
percent (48/50) and 98% (98/100) were correctly
clustered for each subgroup.

Figure 7. Learning performance of the matrix incision tree
algorithm. Fisher's Iris data set was split into 100 training
and 50 test sets. After building a matrix incision tree with
the training set, the test set was put into the tree and
classified by tree traversal method (see text). Overall
classification accuracy was 92% (46/50).

Figure 8. Learning performance of the matrix incision tree
algorithm. Fisher's Iris data set was split into 50 training
and 100 test sets. After building a matrix incision tree
with the training set, the test set was put into the tree and
classified by tree traversal method (see text). Overall
classification accuracy was 97% (97/100).

9, 12

to the hierarchical tree clustering or relevance networks, is that the matrix incision
tree algorithm always considers the group of observations as a whole (group
effect) rather than one by one at each step with certain threshold (threshold effect).
To evaluate this group effect, we measured the classification performance of
matrix incision trees with varying number of objects in the branches of the tree.
We have randomly selected N objects equally from each of the three iris classes
and assigned them to the corresponding branches of the tree shown in Figure 5.
Then we put all the 150 data into the tree to measure the number of misclassified
cases. Figure 9 shows the result for 100 experiments for each N=1 to 30. The
number of errors rapidly decreased from about 13 to about six as the number of
objects in the branches of the matrix incision tree increased from 1 to 12 and then
seemed to reach at a plateau with around six errors It seems to approach the 5
errors in the tree constructed from the whole data set (Fig. 5).

3.2 Leukemia data set

Figure 10 shows the matrix
incision tree constructed from
the 38-case training set with
6,817-gene expression profiles9.
We put the 34-case test data set
into the matrix incision tree with
the tree traversal method (Fig.
10) to evaluate the performance
for the 3-group distinction
(B-cell ALL, T-cell ALL, and
AML), using all 6,817 genes in
the experiment. Because of the small sample size, all objects were assigned with a
prediction label only when they arrived at a 100% homogenous branch. There were
nine cases misclassified by the algorithm (74%, 9/34): five B-cell ALL's were
labeled as AML's, 2 AML's as B-cell ALL's, and one B-cell ALL and one AML as
T-cell ALL's.

Self-tree traversal of the 38 training set into its own tree (Fig. 10) showed a
very interesting result. Eleven objects arrived at a different homogeneous branch
than their own. However, 10 out of the 11 were still tagged with the correct labels
and only one AML (33) was wrongly labeled with B-cell ALL in the experiment.

In the same article, Golub et al.
have selected 50 genes that were most
highly correlated with the ALL/AML
class distinction and provided the
result of their own class discovery and

T-ALL

1.05

AMLAML

B B

AML TB-ALLB-ALL B-ALL

M

1.08
1.05

1.22

M

Figure 10. Matrix incision tree from the 38-case training set with three
leukemia groups (B-ALL, T-ALL, AML, see text). Numbers next to the
branches are matrix incision indices.

1.33

38 cells, B-ALL/T-ALL/AML

Training ALL AML
Cluster 1
Cluster 2

25 0
2 11

Test ALL AML
Cluster 1
Cluster 2

19 1
1 13

Figure 11. Matrix incision tree clustering of the
Golub's ALL/AML leukemia data set (see text).

prediction analysis (http://waldo.wi.mit.edu/MPR/table_ALL_AML_predic.txt).
The matrix incision tree algorithm was applied to the published 38-case training
and 34-case test sets using only the 50 genes pre-selected by Golub et al. (Fig. 11).
For the training set, one cluster had 25 ALL's with no AML and the other had 11
AML's with two ALL's (12, 25) with 95% (36/38, MII = 12.02) accuracy of
relevant clustering. For the independent test set, one cluster had 19 ALL's with one
AML (66) and the other had 13 AML's with one ALL (67) with 94% (32/34, MII =
10.41) accuracy of relevant clustering.

Figure 12 shows the matrix
incision tree from the overall 72
cases using the selected 50 genes.
The three successive incisional
hyperplanes correctly clustered
94% (68/72) of the cases. The
algorithm successfully captured
not only the AML/ALL class
distinction but also the difference
between the training (cases 1-38,
italic, the second and third
branches) and the test (cases
39-72, the first and fourth branches) sets perfectly (100%). The distinction may
come from the potential difference of the independently collected two data sets as
described by Golub et al.

Discussion

Increasing number of methodologies of mining valid information from large-scale
gene expression data are available, and have evolved in parallel with the advance of
gene expression profiling techniques 12 , 13 . Organizing observed data into
meaningful structures is one of the most fundamental modes of learning and
understanding especially in the exploratory phase of research. Exploration can be
best done in a systematic manner. Gene expression data can be viewed as matrices
of genes and arrays (cell lines). The matrix incision tree method and algorithm
provides a way of exploring the structure of complex data space in a systematic
manner.

The matrix incision tree algorithm essentially works as a kind of partitional
clustering algorithm generating a single partition of the observed data at each step
in. However, it also has a property of hierarchical clustering by precisely defining
the 'optimal' incisional hyperplane and iteratively exploring the hierarchical
relationship of the successive 'optimal' incisional hyperplanes. Thus, what is

AML: 28-38
ALL: 12, 257.97

8.58

94% (68/72)

AML: 50-54, 57, 58, 60-66
ALL: 67, 71

ALL: 1-11, 13-24, 26, 27

ALL: 39-49, 55, 56, 59, 68-70, 72 (18 : 0)

(25 : 0)

(2 : 14)

(2 : 11)

6.72

(ALL : AML)

aa

bb

cc

dd

ALL :
1-27,
39-49, 55, 56,
59, 67-72

AML :
28-38,
50-54,
57, 58, 60-66

Figure 12. Matrix incision tree from the Leukemia data set (see text).
The three successive incisional hyperplanes correctly clustered 64 of
the overall 72 cell lines (94%). Note that the matrix incision tree
successfully revealed not only the AML/ALL class distinction but also
the distinction between the training (cases 1-38, italic, branches (b)
and (c)) and test (cases 39-72, branches (a) and (d)) sets (100%) which
is suggested by the different sample collection conditions.

basically represented in a matrix incision tree is the hierarchical organization of
the successive 'optimal' incisional hyperplanes of observed data.

The matrix incision tree algorithm has no assumption about the distribution of
the data nor that of its resultant clusters because it only uses an intuitive geometric
property of each unique observation. The algorithm itself is independent of the
similarity metrics, as are several other clustering algorithms. The matrix incision
tree algorithm dose not require prior assumptions about the geometry or probable
number of groups in observed data, as do SOM and K-means analysis. This simple
nature of matrix incision tree algorithm seems to allow objective and systematic
exploration of complex data, as our preliminary experiments point out. Moreover,
it does not rely on any surrogate such as centroid or geometric grid to represent
clusters as in K-means or SOM but takes all the observations into account.

One weakness of certain clustering
algorithms is that they operate entirely in a
local fashion, using working criteria or
thresholds that do not take into account a
global perspective. For example, when a
hierarchical-tree clustering amalgamates
objects (or clusters of objects) to create a
link, it takes only those objects into
account, neglecting the others. The
relevance networks approach also uses a
single threshold at each comparison. Figure 13 demonstrates an example of this
problem. Although there seem to be distinct two groups, if the link strength
between the connecting two objects in the middle is stronger than other links,
bottom-up hierarchical trees and relevance networks will not place these two
objects in separate clusters. As an analogy, Romeo and Juliet will always be
guaranteed to marry each other (i.e. be in the same cluster), as long as their love is
stronger than any other, regardless of the hate (i.e., low link strength) between
their families. This neglect of group effect (coming from the Capulets and the
Montegues) in clustering algorithms is due to the use of local threshold effect. As
exemplified in Figure 3, the matrix incision algorithm may discover the two groups
if the group effect is larger than the link strength between the two objects.

In summary, our preliminary experiments suggest that the matrix incision tree
algorithm has the potential to be a useful tool in functional genomics. Further
testing using other data sets is underway.

Acknowledgments

LOM was funded under grant R29 LM06538-01 from the National Library of
Medicine, NIH.

Figure 13. The ' Romeo and Juliet effect ' . Line
thickness represents object link strength and the
omitted links of the fully connected objects represent
weak links. Clustering algorithms that uses local
threshold effect only will not directly reveal the
distinct two-group structure because the thickest link
in the middle that connects the two groups will not be
separated, regardless of the global structure, until all
other weaker links are completely separated

References

1. J. DeRisi, L. Penland, P.O. Brown, M.L. Bittner, P.S. Meltzer, M. Ray, Y. Chen,
Y.A. Su, J.M. Trent, "Use of a cDNA microarray to analyse gene expression
patterns in human cancer" Nat Genet 1996;14(4):457-60
2. R.A. Heller, M. Schena, A. Chai, D. Shalon, T. Bedilion, J. Gilmore, D.E.
Woolley, R.W. Davis, "Discovery and analysis of inflammatory disease-related
genes using cDNA microarrays" Proc Natl Acad Sci U S A 1997;94(6):2150-5
3. M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, "Cluster analysis and display
of genome-wide expression patterns" Proc Natl Acad Sci U S A
998;95(25):14863-8
4. V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C.F. Lee, J.M. Trent,
L.M. Staudt, J. Hudson Jr., M.S. Boguski, D. Lashkari, D. Shalon, D. Botstein, P.O.
Brown, "The transcriptional program in the response of human fibroblasts to
serum" Science 1999;283(5398):83-7
5 . A.K. Jain, R.C. Dubes in Algorithms for Clustering Data "Partitional
Clustering" (Prentice Hall, New Jersey, pp.89-133, 1988)
6. T. Kohonen, "Self-organized formation of topologically correct feature maps"
Biological Cybernetics 1982;43:59-69
7. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S.
Lander, T.R. Golub, "Interpreting patterns of gene expression with self-organizing
maps: Methods and application to hematopoietic differentiation" Proc Natl Acad
Sci U S A 1999;96(6):2907-12.
8. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Caasenbeek, J.P. Mesirov, H.
Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lander,
"Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring" Science 1999;286:531-7.
9. J.J. Fortier, H. Solomon, in Multivariate Analysis "Clustering procedures" Ed. P.
R. Krishnaiah (Academic Press, Inc., New York, pp.493-506, 1996)
10. R.E. Jensen, "A dynamic programming algorithm for cluster analysis"
Operations Research 1969;17:1034-57
11. R.A. Fisher, "The Use of Multiple Measurements in Taxonomic Problems"
Annals of Eugenics 1936;7, Part II:179-88.
12. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, "Quantitative monitoring of
gene expression patterns with a cDNA microarray" Science 1995;270:467-470
(1995).
13. G.S. Michaels, D.B. Carr, M. Askenazi, S. Fuhrman, X. Wen, R. Somogyi,
"Cluster analysis and data visualization of large-scale gene expression data" Pac
Symp Biocomput 1998;42-53

