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Analysis of large-scale gene expression data requires novel methods for knowledge discovery 
and predictive model building as well as clustering. Organizing data into meaningful structures 
is one of the most fundamental modes of learning. DNA microarray data set can be viewed as a 
set of mutually associated genes in a high-dimensional space. This paper describes a novel 
method to organize a complex high-dimensional space into successive lower-dimensional 
spaces based on the geometric properties of the data structure in the absence of a priori 
knowledge. The matrix incision tree algorithm reveals the hierarchical structural organization of 
observed data by determining the successive hyperplanes that 'optimally' separate the data 
hyperspace. The algorithm was tested against published data sets yielding promising results.  

1. Introduction 

A general question in many research areas is how to organize observed data into 
meaningful structures. DNA microarray technology constitutes a challenge to 
biomedical researchers, who wants to extract important biological information 
from the mRNA expression data set of very high dimensionality. Increasing 
number of methodologies for functional genomic clustering are being introduced 
to explore the extensive (and largely unlabeled) genomic data sets. 

Cluster analysis involves the utilization of a collection of different algorithms 
to create hypothesized clusters. In exploratory phases of research, cluster analysis 
can be used to explore the underlying structure of the data and generate hypotheses. 
Because cluster analysis is essentially an exploration of the internal structural 
organization of observed data, there may be no single 'best' set of clusters or 'gold 
standard' and clustering algorithm is categorized as unsupervised learning.  

In functional genomics, a typical first step in genomic data exploration is to 
examine the expression fold-differences before and after certain interventions. 
Genes with fold differences greater than a given threshold are considered clustered 
with the intervention1,2. 



   

Another way to approach the problem is to utilize algorithms that 
comprehensively compare all objects against each other to build either 
phylogenetic-type hierarchical trees 3 , 4  or other graphical representation of 
clusters, such as relevance networks using a variety of similarity or distance 
metrics: Euclidean distance, correlation coefficients, or mutual information5. 
Hierarchical tree clustering joins similar objects together into successively larger 
clusters in a bottom-up manner (i.e., from the leaves to the root of the tree), by 
successively relaxing the threshold of joining objects or sets. The relevance 
networks take the opposite strategy. It starts with a completely connected graph 
with the vertices representing each object and the edges representing a measure of 
association and then links are increasingly deleted to reveal 'naturally emerging' 
clusters at a certain threshold.  

Another category of algorithms to explore functional genomic data can be 
classified as partitional clustering algorithms, such as K-means analysis and 
nearest neighbor clustering, which minimize within-cluster scatter or maximize 
between-cluster scatter5. Self-organizing maps (SOM), an artificial neural network 
learning algorithm6, was demonstrated to be capable of finding meaningful clusters 
from functional genomic data7,8. 

This paper describes a novel unsupervised learning method to organize 
complex high-dimensional data space into successive lower-dimensional spaces 
based on a straightforward geometric property of the data structure in the absence 
of a priori knowledge. It uses a partitional clustering approach, as it determines the 
successive hyperplanes that 'optimally' separate observed data and reveal its 
internal hierarchical organization. 

2. Method 

In theory, the partitioning problem can be viewed as the simple process of 
selecting a criterion, evaluating it for all possible partitions, and selecting the 
partition that optimizes the criterion. However, even after we define a 
mathematically sound and intuitively appealing criterion, the number of the 
partitions is the astronomical Stirling number of the second kind9,10. For example, 
the number of possible combinations to create 4 clusters from 19 objects is 
11,259,666,000 and bipartite clustering of N objects roughly explodes to 2N-1. 
Exhaustive enumeration of the whole space is clearly not computationally feasible. 

In the matrix incision tree algorithm, we first define a high-dimensional space 
of observations and its incisional hyperplanes that can separate the data space into 
sub-spaces. Then we try to find the 'optimal' incisional hyperplane based on a 
geometric criterion. To manage the combinatorial explosion of finding the 
'optimal' incisional hyperplane, we have developed a representation to represent 



   

the partitioning problem as a much simpler matrix incision task, and devised an 
unsupervised learning algorithm, the matrix incision tree algorithm, to find the 
'optimal' hyperplane.  

2.1 Data Hyperspace and Incisional Hyperplanes 

Figure 1 illustrates data hyperspace and incisional hyperplanes. In the completely 
connected graphs, the vertices represent objects and the edges represent links. In 
general, coding N objects in such a way that the distance between any two objects 
is equal requires a representation in (N-1)-dimensional space. For example, 
representing four vertices and all the six (4*3/2) edges of equal length is only 
possible in more than 3-D space but not on 2-D plane or 1-D line (Fig. 1c). The 
requirement of (N-1)-dimensional-space to code N objects also applies when the 
distances between objects are all different.  

Infinite N-dimensional space is 
separable by infinite (N-1)-dimensional 
space. For example, plane (2-D) is separable 
by line (1-D) and 3-D space is separable by 
plane (2-D) (Fig. 1b and 1c).  

In general, N objects and their 
geometric relationships can be fully 
represented in (N-1)-dimensional 
hyperspace and are separable into two 
lower-dimensional sub-spaces by a set of 
(N-2)-dimensional incisional hyperplanes. 
When a hyperplane separates N objects into 
two subgroups with m and n objects 
(N=m+n), the plane deletes m*n links 
among the total N(N-1)/2 links and there are 
2N-1-1 such incisional hyperplanes.  

2.2 Object Link Strength Matrix  

To manage complex observations like mRNA expression data, we can view 
each gene or array (i.e., cell line) as an object. The association between genes or 
arrays represents the link strength between two objects. In that way, we can create 
a comprehensive N-by-N object link strength matrix for N genes or N arrays. The 
average link strength for a group of objects is defined as the mean strength of all 
links, 

Within-group average link strength = ∑iLi / {N(N-1)/2}  

(a)

(b)

(c)

(d)

Figure 1. Data hyperspace and incisional 
hyperplanes. (a) Two objects can be arranged in 
1-D 'line' space and are separable by 0-D 'point' 
space. (b) Three objects can be arranged in 2-D 
plane and are separable by 1-D line. (c) Four 
objects require 3-D space and are separable by 
2-D plane. (d) Seven objects in 6-D hyperspace 
separated by 5-D hyperplane. Note that it is a 
severely distorted 3-D representation of the 6-D 
hyperspace, where all the 21 ((7 * 6)/2) links 
can have equal Euclidean length. The incisional 
hyperplane deletes 12 (4 x 3 = 12) links and 
only 9 (4x3/2 + 3x2/2) links will remain in the 
separated sub-spaces. 



   

Similarly, average link strength between two groups is defined as the mean strength 
of all between-group links,  

Between-group average link strength = ∑iLi / (m * n).  
N: number of objects within the group  
L: link strength of the ith link 
m, n: number of objects in each group (N=m+n) 

2.3 Matrix Incision Index (MII) 

Figure 2 is an equivalent but much more 
manageable representation of the hyperspace 
partitioning problem discussed in Figure 1. 
An (N-1)-dimensional space containing fully 
connected N objects can be represented as an 
N-by-N object link strength matrix. The 
rectangular area (a) in Figure 2 represents an 
incisional hyperplane that separates the N 
objects into two sub-spaces of m and n 
objects represented by the triangular areas 
(b) and (c), respectively.  

Therefore, the 'optimal' partitioning problem of data hyperspace becomes a 
matrix incision problem of finding the rectangular area, (a), representing the 
'optimal' incisional hyperplane with the minimum loss of link strength that 
produces the maximum link strengths within the resultant sub-spaces represented 
as the two triangular areas, (b) and (c). Matrix incision index (MII) is defined as the 
ratio of gain (i.e., the weighted mean of the within-group average link strengths of 
the two separated sub-spaces) to loss (i.e., the between-group average link strength 
for the incisional hyperplane) (see Fig. 2), as follows: 

MII = {(m / (n+m)) * b + (n / (n+m)) * c} / a 
     m: number of objects in group 1 
     n: number of objects in group 2 
     a: between-group average link strength between groups 1 and 2 
     b: within-group average link strength of group 1 
     c: within-group average link strength of group 2  

Although the matrix representation of hyperspace and hyperplanes makes the 
problem much simpler, it is worth noting that it is rather deceptively simple 
because we still have to manage the complicated 2-dimensional sorting of the rows 
and columns of the object link strength matrix as well as the N-1 possible 
rectangular areas under the diagonal line to correctly determine the 'optimal' 
incisional hyperplane. Hence, we need a computational algorithm to find the 
correct arrangement of objects in the matrix that returns the highest MII before we 
can obtain an analytic solution for this problem. 

Group 1,  m

Figure 2. Matrix representation of data hyperspace 
and incisional hyperplane .
Matrix Incision Index (MII)  

=  {(m / (n+m)) * b +  (n / (n+m)) * c} / a

aa

bb

cc
Group 2,  n



   

2.4 Geometric Aspect of Matrix Incision Index 

Assume that the six objects in Figure 3 are completely connected with each other 
and have seven strong (r2 = 0.8, solid lines) and eight weak (r2 = 0.1, hidden lines 
in a completely connected graph) links (i.e., total 15 = 6*5/2 = 7 + 8). The broken 
lines represent four hyperplanes that separate the graph into two partitions. As 
shown in Figure 3, the magnitude of MII of incisional hyperplane (broken lines) 
captures the intuitive sense of 'optimality' of partitioning of the completely 
connected graph in hyperspace. The intuitively-most-appealing incisional 
hyperplane (a) corresponds to the highest MII (4.4) and the most unappealing 
hyperplane (d) corresponds to the lowest MII (0.64) among the four examples (out 
of 31 (2

6-1
-1) possible planes). The hyperplanes (b) (MII = 1.8) and (c) (MII = 1.0) 

show intermediate relevance. 

 

2.5 Matrix Incision Tree Algorithm 

We have devised an unsupervised machine learning algorithm to find the 'optimal' 
matrix incision hyperplane with the highest MII (Fig. 4).  
 
Basic Matrix Incision Tree Algorithm 
 
Step 1: Determining computational tolerance level: If a system can comfortably compute 2N-1 MII's for a 

given object link strength matrix (see section 2.2), the computational tolerance level of the system 
for an exhaustive enumeration of all possible combinations of bipartite partitioning of N groups of 
objects (2N-1) will be N. 

Step 2: Developing 'seed' clusters: Most of the clustering algorithms tend to generate similar clusters. We 
created small representative 'seed' clusters up to the system's tolerance level (N) using available 
clustering algorithms such as K-means and SOM (see figure 4).  

Step 3: Trimming outliers of 'seed' clusters: We applied a very simple strategy of trimming 20% of the 
objects with the lowest average link strength (i.e., between each object and all the others in the 
corresponding 'seed' cluster). It is because the central cores of the 'seed' clusters are likely to be 
relevant as the seeds of creating 'candidate' partitions in the following steps. 

aa
bb cc dd

Figure 3. Geometric property of matrix incision index (MII). The
magnitude of MII of incisional hyperplane (broken lines) seems to 
capture the intuitive sense of 'optimal' partitioning of the completely 
connected graph in high dimensional space. 

Average loss Weighted average link strength    MII
a.    (0.8 + 0.8)/9 = 0.18     0.5(0.8) + 0.5(0.8) = 0.8 4.4
b.    (1.6 + 0.6)/8 = 0.275   0.33(0.8) + 0.67(0.54) = 0.5 1.8
c.    (1.6 + 0.3)/5 = 0.38     0.2(1) + 0.8(0.45) = 0.38 1.0
d.    (3.2 + 0.4)/8 = 0.45     0.33(0.1) + 0.67(0.45) = 0.28 0.64

Shown links: r 2 = 0.8
Hidden links: r 2 = 0.1

Broken lines: incisional hyperplanes

Figure 4. Matrix incision tree algorithm.
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search



   

Step 4: For each enumeration of binary partitioning of the 'trimmed-seed' clusters of step 3 (i.e., for each of 
the 2N-1 binary partitioning of N 'trimmed-seed' clusters), 

4.1: Trimming outliers of partitions: Using the same strategy with step 3, trim 20% of the most loosely 
linked objects for both partitions (created by fusion of the 'trimmed-seed' clusters). 

4.2: Generating 'candidate' binary partitions by reassigning the 'trimmed' objects: For each object that 
was trimmed in steps 3 and 4.1 (36%, 1*0.2 + 0.8*0.2), calculate and compare the between-group 
average link strengths between the object and each of the two 'trimmed' partitions of step 4.1 
and assign the object to the partition with the higher average link strength. 

4.3: Measuring MII for the 'candidate' binary partitioning generated in step 4.2 
Step 5: Choosing the 'optimal' partitioning: Select the 'candidate' binary partitioning (generated in step 4.2) 

with the highest MII (measured in step 4.3) among all the enumerations in step 4. 
Step 6: Iterate step 2 to step 5 for the resultant subgroups (by the 'optimal' partitioning selected in step 5) 

successively down to individual leaves (i.e., objects), thereby creating the whole hierarchical tree. 
 

The results described in the present study were all made with the basic matrix 
incision tree algorithm with 20 'seed' clusters and 20%-trimming strategy. The 
algorithm performed reasonably well with more than 9 'seed' clusters and 10-50% 
of trimming rate. A variety of sophistication of the algorithm such as cleverer 
creation of 'seed' clusters, better trimming strategy considering the distribution of 
link strengths, incremental trimming-and-reassignment for refined determination 
of 'optimal' partitioning, and backtracking to ensure the hierarchy of the incisional 
hyperplanes were tested and will be described elsewhere.  

2.6 Tree Learning and Tree Traversal for Classification 

The matrix incision tree algorithm is essentially an unsupervised learning 
algorithm that organizes observed data by determining the hierarchical nature of 
successive 'optimal' incisional hyperplanes purely based on the internal 
organization of the data structure. However, when we build a tree with a labeled 
data set without using the label information, the relationship between the labels and 
the resulting tree structure can be systematically applied to explore unseen 
observations.  

Tree traversal is a successive process of assigning a traversing object with the 
closer branch at the level of each node starting from the root to the leaves of the 
tree. It is useful to consider it a type of nearest neighbor classification, applied at 
each branching point. The tree traversal index (TTI) is defined as the 
between-group average link strength involving two groups: (i) the traversing object, 
and (ii) the cluster represented by each branch. At each node, the traversing object 
moves to the branch with the higher TTI: 

TTI = 1/N (Σ i L i) 
N: number of objects in the corresponding branch. 
Li: link strength between traversing object and the ith object in the branch. 

A measure of homogeneity of each branch can be used to determine whether 
to stop or go further down the tree. 



   

2.7 Evaluation Data Sets 

Although the matrix incision tree algorithm is primarily designed for unsupervised 
learning, well known, fully labeled, and publicized data sets can be used to evaluate 
its performance and characteristics. We have selected the Fisher's iris flower data 
set11 as a simple and exhaustively utilized sample, and Golub's Leukemia mRNA 
expression data set9, a real genomic sample to illustrate the performance of our 
algorithm. 

The Fisher's iris data set consists of 150 observations of three species of Iris 
flowers (50 Iris Setosa, 50 Iris Vesicolor, and 50 Iris Virginica) and 4 
discriminating measurements (petal and septal length and petal and septal width). 
The square of Pearson's correlation coefficient, r2, was calculated with the four 
measurements and used as the link strength between objects. Many supervised and 
unsupervised learning algorithms have been tested against this data set. Golub's 
Leukemia data set has 6,817 human gene expression profiles of 74 cell lines (38 
in training and 34 in test data sets, http://waldo.wi.mit.edu/MPR/data_set_ALL 
AML_train.txt, data_set_ALL_AML_independent.txt) of acute myeloid leukemia 
(AML) and acute lymphoblastic leukemia (ALL). Cancer cells were treated as 
objects and the square of correlation coefficients between gene expression 
profiles were used as object link strengths. 

3. Result  

3.1 Fisher's Iris Data 

Figure 5 shows the matrix incision tree from the whole 150-case iris data. The 
first incisional hyperplane separated all Setosa perfectly from the other categories. 
The next plane separated Vesicolor and Virginica with five errors. Two Virginica's 
were clustered with 48 Vesicolor's and three Vesicolor's with 47 Virgnica's. Thus, 
the overall accuracy of relevant clustering with this three-group example was 97% 
(145/150). Half-split method was used to test the reliability of the method by 
splitting the 150 iris flowers into two subgroups with 50 and 100 cases, The 
overall accuracy of relevant clustering was 96% (48/50) and 98% (8/100), 
respectively (Fig. 6). All of the four errors (cases 66, 81, 40, 77) in the half-split 
study were also found among the five errors (cases 9, 40, 66, 77, 81) in the study 
with the whole data set (Fig. 5).  

To test the learning performance we used the same split groups as training and 
test sets and also in reverse. After building a matrix incision tree with the training 
  



   

set, the complementary test set was put into the tree and classified by tree traversal  
method (Fig.7 and 8). Accuracy of classification for the 100-training-50-testing 
sample was 92% (46/50) and for the 50-training-100-testing sample was 97% 
(97/100). Moreover, the six misclassified objects in the first study (Fig. 7) were 
all found among the seven misclassified ones in the opposite study (Fig. 8).  

Self-tree traversal method (a tree traversal process for objects through its own 
tree) was also applied. The tree built with the whole 150 objects with five 
misclassified ones (9, 40, and 66, 77, 81) shown 
in Figure 5 returned one more misclassified 
ones (9, 12, 40, and 66, 77, 81) after self tree 
traversal. However, the original two 
misclassified ones (40 and 77, Fig. 6a) in the 
tree with 100 objects were reduced to one (77), 
and the original four (9, 12, 66, 81, Fig. 6b) in 
the tree with 50 objects were reduced to two (66, 
81).  

One of the strengths of matrix incision tree 
that represents the structure of the successive 
'optimal' incisional hyperplanes, when compared  
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Figure 9. Mean number of misclassified objects with 
increasing number of objects in the branches of  matrix 
incision tree. Randomly selected N objects equally 
from each of the three iris classes were assigned to 
their corresponding branches of the matrix incision tree 
(Fig. 5). Result from 100 repetitive experiments for 
each N demonstrates that the mean classification error 
decreases and forms a plateau with increasing number 
of objects in the branches of matrix incision tree.

Iris setosa: 101-150
Iris vesicolor: 51-100
Iris virginica: 1-50

50 : 0 
setosa

48 : 2
vesicolor

47 : 3
virginica

1.045

1.97
97%

9, 40 66, 77, 81

17: Iris setosa
17: Iris vesicolor
16: Iris virginica

17 : 0
setosa

15 : 0
vesicolor

16 : 2
virginica

96%
1.94

1.04

66,81

33: Iris setosa
33: Iris vesicolor
34: Iris virginica

33 : 0
setosa

32 : 1
vesicolor

33 : 1
virginica

98%
2.06

40 77

1.05

a) b)

100 train set

33 : 0
setosa

32 : 1
vesicolor

33 : 1
virginica

50 test set

100%
setosa

15 : 2
vesicolor

14 : 2
virginica

92%

40 77 9, 12 66, 81

2.06

1.05

50 train set 100 test set

100%
setosa

31 : 1
vesicolor

33 : 2
virginica

97%

40 59, 779, 12 66, 81

100%
setosa

15 : 2
vesicolor

14 : 2
virginica

1.94

1.04

Figure 5. Matrix incision tree from Fisher's Iris data set. 
The matrix incision algorithm correctly clustered 97% 
(145/150) of the cases. The numbers next to intermediate 
branches are MII's and the lists of numbers next to 
terminal leaves are the numbers of the misclassified cases. 

Figure 6. Matrix incision trees from half-split Fisher's Iris 
data set into 100-case and 50-case subgroups. Ninety-six 
percent (48/50) and 98% (98/100) were correctly 
clustered for each subgroup.

Figure 7. Learning performance of the matrix incision tree 
algorithm. Fisher's Iris data set was split into 100 training 
and 50 test sets. After building a matrix incision tree with 
the training set, the test set was put into the tree and 
classified by tree traversal method (see text). Overall 
classification accuracy was 92% (46/50). 

Figure 8. Learning performance of the matrix incision tree 
algorithm. Fisher's Iris data set was split into 50 training 
and 100 test sets. After building a matrix incision tree 
with the training set, the test set was put into the tree and 
classified by tree traversal method (see text). Overall 
classification accuracy was 97% (97/100).

9, 12



   

to the hierarchical tree clustering or relevance networks, is that the matrix incision 
tree algorithm always considers the group of observations as a whole (group 
effect) rather than one by one at each step with certain threshold (threshold effect). 
To evaluate this group effect, we measured the classification performance of 
matrix incision trees with varying number of objects in the branches of the tree. 
We have randomly selected N objects equally from each of the three iris classes 
and assigned them to the corresponding branches of the tree shown in Figure 5. 
Then we put all the 150 data into the tree to measure the number of misclassified 
cases. Figure 9 shows the result for 100 experiments for each N=1 to 30. The 
number of errors rapidly decreased from about 13 to about six as the number of 
objects in the branches of the matrix incision tree increased from 1 to 12 and then 
seemed to reach at a plateau with around six errors It seems to approach the 5 
errors in the tree constructed from the whole data set (Fig. 5). 

3.2 Leukemia data set 

Figure 10 shows the matrix 
incision tree constructed from 
the 38-case training set with 
6,817-gene expression profiles9. 
We put the 34-case test data set 
into the matrix incision tree with 
the tree traversal method (Fig. 
10) to evaluate the performance 
for the 3-group distinction 
(B-cell ALL, T-cell ALL, and 
AML), using all 6,817 genes in 
the experiment. Because of the small sample size, all objects were assigned with a 
prediction label only when they arrived at a 100% homogenous branch. There were 
nine cases misclassified by the algorithm (74%, 9/34): five B-cell ALL's were 
labeled as AML's, 2 AML's as B-cell ALL's, and one B-cell ALL and one AML as 
T-cell ALL's.  

Self-tree traversal of the 38 training set into its own tree (Fig. 10) showed a 
very interesting result. Eleven objects arrived at a different homogeneous branch 
than their own. However, 10 out of the 11 were still tagged with the correct labels 
and only one AML (33) was wrongly labeled with B-cell ALL in the experiment. 

In the same article, Golub et al. 
have selected 50 genes that were most 
highly correlated with the ALL/AML 
class distinction and provided the 
result of their own class discovery and 

T-ALL

1.05

AMLAML

B B

AML TB-ALLB-ALL B-ALL

M

1.08
1.05

1.22

M

Figure 10. Matrix incision tree from the 38-case training set with three 
leukemia groups (B-ALL, T-ALL, AML, see text). Numbers next to the 
branches are matrix incision indices.

1.33

38 cells, B-ALL/T-ALL/AML

Training ALL  AML
Cluster 1
Cluster 2

25      0 
2     11

Test ALL  AML
Cluster 1
Cluster 2

19       1 
1     13

Figure 11. Matrix incision tree clustering of the 
Golub's ALL/AML leukemia data set (see text).



   

prediction analysis (http://waldo.wi.mit.edu/MPR/table_ALL_AML_predic.txt). 
The matrix incision tree algorithm was applied to the published 38-case training 
and 34-case test sets using only the 50 genes pre-selected by Golub et al. (Fig. 11). 
For the training set, one cluster had 25 ALL's with no AML and the other had 11 
AML's with two ALL's (12, 25) with 95% (36/38, MII = 12.02) accuracy of 
relevant clustering. For the independent test set, one cluster had 19 ALL's with one 
AML (66) and the other had 13 AML's with one ALL (67) with 94% (32/34, MII = 
10.41) accuracy of relevant clustering.  

Figure 12 shows the matrix 
incision tree from the overall 72 
cases using the selected 50 genes. 
The three successive incisional 
hyperplanes correctly clustered 
94% (68/72) of the cases. The 
algorithm successfully captured 
not only the AML/ALL class 
distinction but also the difference 
between the training (cases 1-38, 
italic, the second and third 
branches) and the test (cases 
39-72, the first and fourth branches) sets perfectly (100%).  The distinction may 
come from the potential difference of the independently collected two data sets as 
described by Golub et al. 

Discussion  

Increasing number of methodologies of mining valid information from large-scale 
gene expression data are available, and have evolved in parallel with the advance of 
gene expression profiling techniques 12 , 13 . Organizing observed data into 
meaningful structures is one of the most fundamental modes of learning and 
understanding especially in the exploratory phase of research. Exploration can be 
best done in a systematic manner. Gene expression data can be viewed as matrices 
of genes and arrays (cell lines). The matrix incision tree method and algorithm 
provides a way of exploring the structure of complex data space in a systematic 
manner.  

The matrix incision tree algorithm essentially works as a kind of partitional 
clustering algorithm generating a single partition of the observed data at each step 
in. However, it also has a property of hierarchical clustering by precisely defining 
the 'optimal' incisional hyperplane and iteratively exploring the hierarchical 
relationship of the successive 'optimal' incisional hyperplanes. Thus, what is 

AML: 28-38
ALL: 12, 257.97

8.58

94% (68/72)

AML: 50-54, 57, 58, 60-66 
ALL: 67, 71

ALL: 1-11, 13-24, 26, 27

ALL: 39-49, 55, 56, 59, 68-70, 72 (18 : 0)

(25 : 0)

(2 : 14)

(2 : 11)

6.72

(ALL : AML)

aa

bb

cc

dd

ALL : 
1-27, 
39-49, 55, 56, 
59, 67-72

AML :
28-38,  
50-54, 
57, 58, 60-66

Figure 12. Matrix incision tree from the Leukemia data set (see text). 
The three successive incisional hyperplanes correctly clustered 64 of 
the overall 72 cell lines (94%). Note that the matrix incision tree 
successfully revealed not only the AML/ALL class distinction but also 
the distinction between the training (cases 1-38, italic, branches (b) 
and (c)) and test (cases 39-72, branches (a) and (d)) sets (100%) which 
is suggested by the different sample collection conditions.



   

basically represented in a matrix incision tree is the hierarchical organization of 
the successive 'optimal' incisional hyperplanes of observed data.  

The matrix incision tree algorithm has no assumption about the distribution of 
the data nor that of its resultant clusters because it only uses an intuitive geometric 
property of each unique observation. The algorithm itself is independent of the 
similarity metrics, as are several other clustering algorithms. The matrix incision 
tree algorithm dose not require prior assumptions about the geometry or probable 
number of groups in observed data, as do SOM and K-means analysis. This simple 
nature of matrix incision tree algorithm seems to allow objective and systematic 
exploration of complex data, as our preliminary experiments point out. Moreover, 
it does not rely on any surrogate such as centroid or geometric grid to represent 
clusters as in K-means or SOM but takes all the observations into account. 

One weakness of certain clustering 
algorithms is that they operate entirely in a 
local fashion, using working criteria or 
thresholds that do not take into account a 
global perspective. For example, when a 
hierarchical-tree clustering amalgamates 
objects (or clusters of objects) to create a 
link, it takes only those objects into 
account, neglecting the others. The 
relevance networks approach also uses a 
single threshold at each comparison. Figure 13 demonstrates an example of this 
problem. Although there seem to be distinct two groups, if the link strength 
between the connecting two objects in the middle is stronger than other links, 
bottom-up hierarchical trees and relevance networks will not place these two 
objects in separate clusters. As an analogy, Romeo and Juliet will always be 
guaranteed to marry each other (i.e. be in the same cluster), as long as their love is 
stronger than any other, regardless of the hate (i.e., low link strength) between 
their families. This neglect of group effect (coming from the Capulets and the 
Montegues) in clustering algorithms is due to the use of local threshold effect. As 
exemplified in Figure 3, the matrix incision algorithm may discover the two groups 
if the group effect is larger than the link strength between the two objects.  

In summary, our preliminary experiments suggest that the matrix incision tree 
algorithm has the potential to be a useful tool in functional genomics. Further 
testing using other data sets is underway. 
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Figure 13. The ' Romeo and Juliet effect ' . Line 
thickness represents object link strength and the 
omitted links of the fully connected objects represent 
weak links. Clustering algorithms that uses local 
threshold effect only will not directly reveal the 
distinct two-group structure because the thickest link 
in the middle that connects the two groups will not be 
separated, regardless of the global structure, until all 
other weaker links are completely separated
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