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Abstract Purpose: Gastric cancer is heterogeneous clinically and histologically, and prognosis prediction
by tumor grade or type is difficult. Although previous studies have suggested that frozen tissue ^
based molecular classifications effectively predict prognosis, prognostic classification on forma-
lin-fixed tissue is needed, especially in early gastric cancer.
Experimental Design:We immunostained 659 consecutive gastric cancers using 56 tumor-
associated antibodies and the tissue arraymethod. Hierarchical cluster analyseswere donebefore
and after feature selection.To optimize classifier number and prediction accuracy for prognosis, a
supervised analysis using a support vector machine algorithmwas used.
Results:Of 56 gene products, 27 survival-associated proteins were selected (feature selection),
and hierarchical clustering identified two clusters: cluster 1and cluster 2. Cluster 1cancers were
more likely to have intestinal type, earlier stage, and better prognosis than cluster 2 (P < 0.05).
In 187 early gastric cancers (pT1), cluster 2 was associated with the presence of metastatic
lymph nodes (P = 0.026). Kaplan-Meier survival curves stratified by pathologic tumor-lymph
nodemetastasis revealed that cluster 2 was associatedwith poor prognosis in stage I or II cancer
(P < 0.05). Support vector machines and genetic algorithms selected nine classifiers from the
whole data set, another nine classifiers for stage I and II, and eight classifiers for stage III and IV.
The prediction accuracies for patient outcomewere 73.1%, 88.1%, and 76%, respectively.
Conclusions:Protein expressionprofiling using the tissue arraymethodprovided ausefulmeans
for themolecular classification of gastric cancer into survival-predictive subgroups.Themolecular
classification predicted lymph node metastasis and prognosis in early stage gastric cancer.

The incidence and mortality of gastric cancer have declined
steadily over the past several decades. Nonetheless, gastric
cancer remains a major public health issue as the fourth most
common cancer and the second leading cause of cancer death
worldwide (1, 2). Gastric cancer is a heterogeneous disease
both histologically and genetically, and patient outcome is
difficult to predict using classic histologic and molecular
classifications. Many histopathologic classifications, including
histologic type and grade by WHO (3), Lauren’s classification
(4), Ming’s classification (5), and Goseki classification (6) have
been applied for the prediction of patient survival, but their
usefulness remains controversial (3, 7).

The incidence of small and early gastric cancer is high in
Asia because the increased usage of upper endoscopy has led to
the earlier detection of lesions (8). However, despite curative
resection of the primary tumor, some early gastric cancer
patients succumb to the disease as a result of local or distant
tumor recurrence. Adjuvant chemotherapy benefits some
patients with early gastric cancer, but it is not necessary in all
patients. Therefore, additional markers are required to identify
those patients at risk of recurrence or poor prognosis. Recently,
large-scale molecular techniques such as DNA microarrays
have contributed to our understanding of the molecular
complexity of gastric cancer and prognostic classification
according to gene expression profile has been achieved using
frozen tissue (9, 10). However, in small and early gastric cancer
patients, the detection and sampling of proper cancer tissue
using gross examination is difficult. In addition, the cost,
complexity, and interpretation of DNA microarrays are
currently unsuitable for routine use in standard clinical
settings. Therefore, prognostic classification on formalin-fixed
paraffin-embedded tissue is required, especially in small and
early gastric cancer.
Many candidate gene products for the prediction of patient

survival have been reported in gastric cancer (11, 12). Genetic
alterations including those of p53, MUC1, CEA, E-cadherin,
p16, and CD44 have been reported to play important roles
in the development and progression of the disease (13–18).
Although much has been learned of the genetic factors
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Table 1. Antibodies used for immunohistochemical study

Antibody Retrieval
methods

Dilution Source Nonneoplastic
mucosa

Altered Expression
in cancer

a-caspase-3 Microwave 1:100 IMGENEX Faint stain Nucleus + cytoplasm
APC Microwave 1:400 Abcam Cytoplasm F nucleus Loss
h-Catenin Microwave 1:200 Transduction Membranous Nucleus
bcl-2 Microwave 1:100 DAKO Negative Nucleus
Caspase-1 Microwave 1:200 Santa Cruz Biotechnology Cytoplasm Loss
Caveolin-1 Microwave 1:250 Transduction Negative Cytoplasm +

membranous
CD10 Autoclave 1:80 Novocastra Negative Membranous
CD24 Microwave Neomarker Negative Membranous +

cytoplasm
CD44 Microwave 1:40 Novocastra Negative Membranous
CEA Microwave 1:50 DAKO Negative Cytoplasm
C-erbB2 Microwave 1:75 DAKO Negative Membranous
c-fos Microwave 1:100 Santa Cruz Biotechnology Nucleus Nucleus
c-kit Microwave 1:250 DAKO Negative Cytoplasm
Cytokeratin5 Microwave 1:100 Abcam Negative Membranous
Cytokeratin6 Microwave 1:100 Novocastra Membranous* Membranous
Cytokeratin7 Microwave 1:50 DAKO Membranous Membranous
Cytokeratin8 Microwave 1:100 DAKO Membranous Membranous
Cytokeratin14 Microwave 1:100 Novocastra Negative Membranous
Cytokeratin16 Microwave 1:20 Novocastra Negative Membranous
Cytokeratin17 Microwave 1:40 Novocastra Negative Membranous
Cytokeratin18 Microwave 1:100 DAKO Membranous Membranous
Cytokeratin19 Microwave 1:100 DAKO Membranous Membranous
Cytokeratin20 Microwave 1:50 DAKO Membranous* Membranous
DNA-PKcs Microwave 1:100 Santa Cruz Biotechnology Nucleus Loss
E-cadherin Microwave 1:200 Transduction Membranous Loss
FHIT Microwave 1:250 Zymed Nucleus Loss
Gst-p Microwave 1:5,000 Cytoplasm Loss
HDAC1 Microwave 1:150 Santa Cruz Biotechnology Nucleus Loss
Hexokinase II Microwave 1:100 Santa Cruz Biotechnology Negative Cytoplasm
Id4 Microwave 1:200 Santa Cruz Biotechnology Faint stain Cytoplasm
IRS-1 Microwave 1:200 Santa Cruz Biotechnology
KAI1 Microwave 1:200 Santa Cruz Biotechnology Cytoplasm Loss
MAGE-A Microwave 1:50 Zymed Negative Nucleus + cytoplasm
MGMT Microwave 1:50 Chemicon Nucleus Loss
MUC1 Microwave 1:100 Novocastra Negative Cytoplasm
MUC2 Microwave 1:100 Novocastra Cytoplasm* Cytoplasm
MUC5AC Microwave 1:100 Novocastra Cytoplasmc Cytoplasm
MUC6 Microwave 1:100 Novocastra Cytoplasmc Cytoplasm
Osteonectin Microwave 1:100 DSHB Cytoplasm Loss
P16 Autoclave 1:50 PharMingen Nucleus Loss
P53 Microwave 1:100 DAKO Negative Nucleus
P63 Microwave 1:100 Santa Cruz Biotechnology Negative Nucleus
PML Microwave 1:200 Medical and Biological

Laboratories
Nucleus Loss

PTEN Microwave 1:50 A.G. Scientific Cytoplasm Loss
rad9 Microwave 1:100 IMGENEX Nucleus Loss
Rb Microwave 1:50 PharMingen Nucleus Loss
S100A2 Microwave 1:100 DAKO Negative Nucleus + cytoplasm
S100A4 Microwave 1:500 DAKO Negative Nucleus + cytoplasm
S100A6 Microwave 1:750 DAKO Faint stain Nucleus + cytoplasm
SAP97 Autoclave 1:50 StressGen

Biotechnologies Corp.
Membranous Loss

smad4 Microwave 1:50 Santa Cruz Biotechnology Nucleus Loss
smad7 Microwave 1:100 Santa Cruz Biotechnology Negative Cytoplasm
Sp1 Microwave 1:200 Santa Cruz Biotechnology Nucleus Loss
TCF4 Autoclave 1:50 Upstate Nucleus Nucleus
VEGF Microwave 1:250 Santa Cruz Biotechnology Cytoplasm Cytoplasm
XIAP Microwave 1:50 BD Bioscience Negative Cytoplasm

Abbreviations: APC, adenomatous polyposis coli; DNA-PKcs, catalytic subunit of DNA-dependent protein kinase; FHIT, fragile histidine triad;
HDAC1, histone deacetylase 1; IRS-1, insulin receptor substrate-1; KAI1, kangai 1; MAGE-A, melanoma antigen A; MGMT, O6-methylguanine
DNA-methyltransferase; PML, promyelocytic leukemia; PTEN, phosphatase and tensin homologue deleted on chromosome 10; SAP97,
synapse-associated protein 97; TCF4, T-cell factor 4; XIAP, X-linked inhibitor of apoptosis protein.
*Positive staining in intestinal metaplasia and negative staining in gastric glands.
cMUC5AC was positive in superficial glands and MUC6 was positive in deep glands of gastric mucosa.
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predicting survival, only a few genetic alterations have been
used for the diagnosis and management of patients with gastric
cancer. Recently, large-scale molecular studies on formalin-
fixed tissue have become possible by tissue array method using
immunohistochemical approach. Such large-scale studies in-
volve a relatively large number of markers in addition to a large
number of cases. Moreover, combined or cluster analysis using
multiple markers has been reported to be significantly
correlated with patient survival (19, 20). Jacquemier et al.
identified a set of 21 proteins using supervised analysis in
breast cancer, the expressions of which were significantly
correlated with metastasis-free survival (20).

In this study, we immunostained 659 consecutive gastric
cancers using 56 tumor-associated antibodies and the tissue
array method. Gastric cancer was subclassified using classic
hierarchical clustering before and after feature selection. To
obtain the optimal number of classifiers and prediction
accuracy for patient outcome, we did supervised analysis using
a support vector machine (SVM) algorithm.

Materials andMethods

Specimens. A total of 659 consecutive, surgically resected cases of
primary gastric cancer treated over a period of 1 year were identified in

Fig. 1. Representative expressions of proteins studied by immunohistochemistry (original magnification, �400).
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the files of the Department of Pathology, Seoul National University
College of Medicine (Seoul, Korea). Age, sex, tumor location, lymphatic
invasion, vascular invasion, and pathologic tumor-lymph node
metastasis (pTNM) stage (21) were evaluated by reviewing medical

charts and pathologic records. The mean age of the 659 patients was
54.7 years, and 93% underwent curative resection (R0 according to the
American Joint Committee on Cancer guideline). The study included
438 men and 221 women, and included 436 advanced and 223 early

Table 2. Expression rates of the 56 proteins in gastric cancer and 5-y survival rates

Antibody Expression rate (%) Univariate survival analysis using
Kaplan-Meier curve 5-y survival

rate according to expression status

P

Negative Positive Negative Positive

a-caspase-3 203 (33.4) 405 (66.6) 51.91 F 3.56 70.71 F 2.29 <0.0001
APC 159 (25.1) 475 (74.9) 59.09 F 3.93 67.05 F 2.19 0.0325
h-Catenin 493 (81.0) 116 (19.0) 66.43 F 2.15 58.13 F 4.71 Not significant
bcl-2 564 (90.5) 59 (9.5) 64.11 F 2.05 72.28 F 5.90 Not significant
Caspase-1 116 (18.6) 507 (81.4) 43.01 F 4.68 70.05 F 2.06 <0.0001
Caveolin-1 630 (98.6) 9 (1.4) 44.44 F 16.56 65.61 F 1.92 0.0475
CD10 568 (91.9) 50 (8.1) 63.75 F 2.04 72.87 F 6.44 Not significant
CD24 429 (68.2) 200 (31.8) 69.66 F 2.25 56.17 F 3.57 0.0002
CD44 499 (82.2) 108 (17.8) 64.38 F 2.18 62.75 F 4.73 Not significant
CEA 359 (56.5) 276 (43.5) 69.00 F 2.47 60.30 F 3.00 0.0344
C-erbB2 595 (95.0) 31 (5.0) 65.44 F 1.97 63.40 F 8.79 Not significant
c-fos 393 (61.7) 244 (38.3) 58.81 F 2.52 75.35 F 2.79 <0.0001
c-kit 612 (98.7) 8 (1.3) 65.15 F 1.95 62.50 F 17.12 Not significant
Cytokeratin5 609 (97.8) 14 (2.2) 65.00 F 1.96 66.08 F 13.94 Not significant
Cytokeratin6 378 (66.5) 190 (33.5) 56.99 F 2.59 77.60 F 3.05 <0.0001
Cytokeratin7 175 (29.4) 421 (70.6) 60.25 F 3.78 66.50 F 2.33 Not significant
Cytokeratin8 25 (4.3) 555 (95.7) 60.00 F 9.80 64.60 F 2.06 Not significant
Cytokeratin14 629 (99.5) 3 (0.5) 65.88 F 1.92 33.33 F 27.22 Not significant
Cytokeratin16 587 (97.5) 15 (2.5) 64.54 F 2.00 61.90 F 13.44 Not significant
Cytokeratin17 627 (99.7) 2 (0.3) 65.61 F 1.92 50.00 F 35.36 Not significant
Cytokeratin18 27 (4.3) 595 (95.7) 58.20 F 9.65 65.13 F 1.98 Not significant
Cytokeratin19 68 (11.1) 546 (88.9) 65.67 F 5.80 64.38 F 2.08 Not significant
Cytokeratin20 455 (73.4) 165 (26.6) 65.38 F 2.27 62.91 F 3.80 Not significant
DNA-PKcs 114 (20.2) 450 (79.8) 54.69 F 4.70 65.29 F 2.29 0.0135
E-cadherin 265 (42.3) 361 (57.7) 55.33 F 3.09 72.59 F 2.39 <0.0001
FHIT 286 (47.5) 316 (52.5) 61.76 F 2.91 67.76 F 2.67 Not significant
Gst-p 18 (2.9) 605 (97.1) 71.43 F 10.84 64.06 F 1.98 Not significant
HDAC1 12 (2.0) 599 (98.0) 57.14 F 14.62 65.05 F 1.98 Not significant
Hexokinase II 523 (82.9) 108 (17.1) 68.11 F 2.06 48.70 F 4.92 <0.0001
Id4 308 (53.3) 270 (46.7) 60.01 F 2.83 67.62 F 2.89 Not significant
IRS-1 105 (17.5) 495 (82.5) 54.31 F 4.97 66.43 F 2.14 0.0303
KAI1 108 (17.1) 524 (82.9) 47.33 F 4.85 68.97 F 2.05 <0.0001
MAGE-A 561 (87.7) 79 (12.3) 67.07 F 2.01 55.86 F 5.66 Not significant
MGMT 89 (13.9) 549 (86.1) 56.34 F 5.33 66.89 F 2.04 0.0487
MUC1 494 (77.2) 146 (22.8) 70.22 F 2.09 49.02 F 4.18 <0.0001
MUC2 438 (71.8) 172 (28.2) 63.05 F 2.34 67.01 F 3.64 Not significant
MUC5AC 347 (54.6) 289 (45.4) 62.03 F 2.65 69.55 F 2.74 Not significant
MUC6 513 (81.8) 114 (18.2) 64.38 F 2.15 67.58 F 4.44 Not significant
Osteonectin 342 (55.9) 270 (44.1) 55.24 F 2.73 76.46 F 2.62 <0.0001
P16 179 (29.3) 432 (70.7) 60.63 F 3.70 65.90 F 2.32 Not significant
P53 429 (66.9) 212 (33.1) 69.84 F 2.25 56.01 F 3.46 0.0012
P63 616 (97.9) 13 (2.1) 65.79 F 1.94 26.92 F 12.98 0.0002
PML 74 (11.6) 562 (88.4) 54.19 F 5.87 66.57 F 2.02 0.0066
PTEN 157 (24.8) 477 (75.2) 45.46 F 4.07 71.74 F 2.09 <0.0001
rad9 55 (8.8) 573 (91.2) 41.54 F 6.68 67.01 F 1.99 <0.0001
Rb 19 (3.1) 596 (96.9) 63.16 F 11.07 64.45 F 1.99 Not significant
S100A2 616 (97.2) 18 (2.8) 65.24 F 1.94 51.34 F 12.43 Not significant
S100A4 545 (88.0) 74 (12.0) 67.31 F 2.04 42.65 F 5.79 <0.0001
S100A6 86 (14.7) 500 (85.3) 64.22 F 5.24 63.23 F 2.19 Not significant
SAP97 409 (64.6) 224 (35.4) 58.44 F 2.48 77.21 F 2.83 <0.0001
smad4 87 (13.7) 550 (86.3) 52.16 F 5.40 67.09 F 2.03 0.0019
smad7 465 (73.0) 172 (27.0) 69.14 F 2.17 55.92 F 3.83 0.0005
Sp1 21 (3.4) 595 (96.6) 52.38 F 10.90 65.21 F 1.98 Not significant
TCF4 390 (61.6) 243 (38.4) 56.41 F 2.55 79.83 F 2.60 <0.0001
VEGF 248 (39.6) 378 (60.4) 52.41 F 3.23 72.97 F 2.31 <0.0001
XIAP 467 (77.8) 133 (22.2) 65.03 F 2.24 58.84 F 4.34 Not significant

Abbreviations: APC, adenomatous polyposis coli; DNA-PKcs, catalytic subunit of DNA-dependent protein kinase; FHIT, fragile histidine triad;
HDAC1, histone deacetylase 1; IRS-1, insulin receptor substrate-1; KAI1, kangai 1; MAGE-A, melanoma antigen A; MGMT, O6-methylguanine
DNA-methyltransferase; PML, promyelocytic leukemia; PTEN, phosphatase and tensin homologue deleted on chromosome 10; SAP97,
synapse-associated protein 97; TCF4, T-cell factor 4; XIAP, X-linked inhibitor of apoptosis protein.
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gastric cancers. No patient had received preoperative chemotherapy or
radiotherapy. Tissue slides were reviewed for histologic classifications
(according to WHO and Lauren’s classifications; refs. 3, 4). Patient
clinical outcome was followed-up from the date of surgery up to a
period of 1 to 72 months (mean, 52 months). The cases lost to follow-
up and deaths from any other cause other than gastric cancer were
regarded as censored data for the analysis of survival rates. This study
was approved by the Institutional Review Board for Human Subject
Research at Seoul National University Hospital.

Tissue array methods. Twelve array blocks containing a total of
659 cases were prepared as described previously (Superbiochips
Laboratories; refs. 19, 22). Core tissue biopsies (2 mm in diameter)
were taken from individual paraffin-embedded gastric tumors (donor
blocks) and arranged in recipient paraffin blocks (tissue array blocks)
using a trephine. As it has previously been proven that staining results
obtained from different intratumoral areas in various tumors agree well
(22–25), a core was sampled in each case. An adequate case was

defined as a tumor occupying >10% of the core area. Each block
contained three internal controls consisting of nonneoplastic gastric
mucosa from the body, antrum, and intestinal metaplasia. Four-
micrometer-thick sections were cut from each tissue array block,
deparaffinized and dehydrated.

Immunohistochemistry. Immunohistochemical staining against tu-
mor-associated gene products was done using a streptavidin peroxidase
procedure following an antigen retrieval process using microwaves
or autoclaves. Commercially available antibodies were tested using a
human control slide and a stomach cancer control slide for immu-
nohistochemistry (Superbiochips Laboratories). After the test proce-
dure, 56 antibodies, which were properly stained in each positive and
negative control, were selected for this study. Table 1 and Fig. 1 list the
antibodies used. The expression status of nonneoplastic gastric glands
and altered expression patterns in gastric cancer are described in
Table 1. For statistical analysis of collected data, immunostaining results
were considered positive when z10% of neoplastic cells were stained

Fig. 2. Classification of 601gastric cancers based on the expression of the
56 proteins.A, matrix format presenting thewhole data. In datamatrix (upper),
a row corresponds to a single tumor, and each column corresponds to a single
protein biomarker. Colors in columns represent expression levels: negative
expression (green), positive expression (red), and missing data (gray).
Horizontal bars (lower) correspond to the clusters. B, protein dendrogram.
C, univariate survival analysis by Kaplan-Meier method.
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(19, 22). Immunoreactivity was assessed microscopically by two
independent pathologists unaware of the clinical details of individual
patients. The case-by-case final consensus result was discussed and
determined in a common session.

Cluster analyses. Expression data were recorded as follows: -1 was
designated negative staining, 1 was designated positive staining,
missing data were left blank in the data table. In this study, hierarchical
cluster analyses were done using the Cluster program (complete linkage
clustering) and results were displayed using TreeView (26). All cases
with missing values in >20% of the columns were excluded from the
cluster analyses. We could perform an unsupervised analysis on 56 gene
expressions in 601 gastric cancer samples (91.2%) of 659 consecutive
samples. Of these 56 genes, 27 genes which showed significant
correlations with patient outcome using the Kaplan-Meier survival
method were selected (feature selection). After feature selection, we did
a cluster analysis using these 27 gene expression profiles in 614 samples
(93.2%) of 659 consecutive samples.

Supervised analysis using SVM and genetic algorithm. SVM and
genetic algorithm were used to identify protein classifier sets associated
with survival status (27). SVM is well known for its competency among
off-the-shelf classification algorithms and its performance comes from

mapping of the original feature space (data space) to the higher
dimensional space. The hyperplane obtained in the higher dimensional
space generally shows excellent classification performance. In addition
to the classification power of the SVM algorithm, selection of the input
variables was important to the performance of the classification
algorithm. However, it is too computationally intensive to regard all
the possible combinations of 56 genes. Therefore, the genetic algorithm
was applied to select an optimal subset of tumor-associated genes that
yielded the best result for classification of the patient’s survival status.
The genetic algorithm finds an optimal solution by simulating the
natural genetic selection procedure. At each step of the gene selection,
prediction accuracy with 10-fold cross-validation was calculated. Cross-
validation is a widely used method for assessing the performance of a
classification algorithm. It separates the whole data set into a training
and test data set. For example, a 10-fold cross-validation assigns 9/10
of the whole data into the training set, and 1/10 of the whole data into
the test set. When the training and test sets are assigned, the
classification model is extracted from the training set and the
performance of the model is examined in the test set. This process is
repeated until all instances of the data set are assigned to the test set at
once. By combining the SVM and genetic algorithm, the classifier

Fig. 3. Classification of 614 gastric cancers based on the expression of the 27 survival-associated proteins after feature selection. A, matrix format presenting the data.
Gastric cancer was divided into two subgroups, clusters 1and 2. B, protein dendrogram. C, univariate survival analysis by Kaplan-Meier method. D, Kaplan-Meier survival
curve in stage I cancers. E, Kaplan-Meier survival curve in stage II cancers.
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consisting of a subset of 56 tumor-associated genes yielding the best
classification performance with a 10-fold cross-validation was extracted.
All computations were done using the R program package (e1071
package for SVM and genalg package for genetic algorithm; ref. 28).

Statistical analyses. Either the m2 test or Fisher’s exact test (two-
sided) was done to determine the correlation between gene expression
status and clinicopathologic variables. Survival curves were estimated
using the Kaplan-Meier product-limit method, and the significance of
the differences between survival curves were determined using a log-
rank test. Multivariate survival analyses were done using the Cox
proportional hazards model. The association between clustering and
regional lymph node metastasis was evaluated by multivariate logistic
regression. Results were considered to be statistically significant for
P < 0.05. All statistical analyses were conducted using SPSS 12.0
statistical software program (SPSS).

Results

Expression profiling of 56 proteins and hierarchical cluster
analysis. The staining results of the 56 antibodies are

summarized in Table 2. By Kaplan-Meier analyses, the
expression status of 27 proteins were found to be significantly
associated with patient survival (P < 0.05). The overall expres-
sion patterns for 601 samples of gastric cancer were analyzed
by hierarchical clustering after excluding those with values
missing in >20% of the columns. The combined protein
expression patterns defined two clusters: cluster A (24 cases)
and cluster B (577 cases). Cluster B was subdivided into three
clusters, cluster B1 (57 cases), cluster B21 (140 cases), and
cluster B22 (380 cases; Fig. 2A and B). Cluster B22 cases tended
to have better survival than clusters A, B1, or B21 (P < 0.0001;
Fig. 2C). Multivariate analysis, including pTNM stage (II-IV
versus I) and the molecular classification (cluster B22 versus
clusters A + B21 + B1), showed that the molecular classification
was an independent prognostic indicator of survival (hazard
ratio, 0.654; 95% confidence interval, 0.498-0.858; P = 0.002).
Hierarchical cluster analysis of gastric cancer after feature

selection. Twenty-seven survival-associated proteins were se-
lected after univariate survival analyses of the 56-protein

Table 3. Clinicopathologic characteristics of the two clusters by hierarchical cluster analysis with 27 survival-
associated proteins

Characteristics Clusters by hierarchical clustering (%) Total P

Cluster 1 Cluster 2

Age (y, mean F SD) 54.34 F 12.48 55.62 F 12.84 614 0.800
Gender 0.376
Male 243 (59.6) 165 (40.4) 408
Female 115 (55.8) 91 (44.2) 206

Location 0.002*
Low 175 (61.4) 110 (38.6) 285
Middle 159 (59.6) 108 (40.4) 267
Upper 8 (50.0) 8 (50.0) 16
Whole 16 (34.8) 30 (65.2) 46

Tumor size (cm) 4.65 F 2.79 6.23 F 3.04 614 0.091
WHO classification 0.001*
WD 42 (80.8) 10 (19.2) 52
MD 121 (67.6) 58 (32.4) 179
PD 130 (49.1) 135 (50.9) 265
Mucinous 18 (47.4) 20 (52.6) 38
SRC 47 (58.8) 33 (41.2) 80

Lauren classification 0.002
Intestinal 162 (70.1) 69 (29.9) 231
Diffuse 165 (48.8) 173 (51.2) 338
Mixed 31 (68.9) 14 (31.1) 45

Depth of invasion <0.001*
Advanced 200 (46.8) 227 (53.2) 427
Early 158 (84.5) 29 (15.5) 187

Lymph node metastasis <0.001*
Absent 185 (79.7) 47 (20.3) 232
Present 173 (45.3) 209 (54.7) 382

Distant metastasis 0.010*
Absent 337 (59.8) 227 (40.2) 564
Present 17 (39.5) 26 (60.5) 43

Stage <0.001*
I 201 (79.4) 52 (20.6) 253
II 61 (46.2) 71 (53.8) 132
III 56 (41.5) 79 (58.5) 135
IV 40 (42.6) 54 (57.4) 94

Lymphatic invasion <0.001*
Absent 277 (64.1) 155 (35.9) 432
Present 81 (44.5) 101 (55.5) 182

Total 358 256 614

*P < 0.05.
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expression. A total of 614 gastric cancer cases were analyzed by
hierarchical clustering analysis after excluding those with values
missing in >20% of the columns. Tumors were separated into
two main branches (Fig. 3A). The right branch, i.e., cluster 1,
consisted of 356 cases and was characterized by intestinal type
(according to Lauren’s classification; P = 0.002), lower lymph
node metastasis (P < 0.001), and left pTNM stage (P < 0.001)
compared with the lower branch, i.e., cluster 2, which consisted
of 256 cases (Table 3). Of the 614 gastric cancers, 187 cancers
were limited to the mucosal or submucosal levels (pT1). In the
187 early gastric cancers, cluster 2 cancers were more likely to
have metastatic lymph nodes (P = 0.026). By multivariate
logistic regression analysis, cluster 2 was significantly correlated
with lymph node metastasis independently of lymphatic
invasion and depth of invasion (P = 0.027; Table 4).
Using a protein dendrogram, 27 survival-associated proteins

were classified into three groups (Fig. 3B). Group 1 consisted of
proteins overexpressed in gastric cancer, e.g., CD24, hexokinase
II, smad7, MUC1, S100A4, and CEA, whereas group 3 consisted
of suppressor proteins, e.g., APC, smad4, KAI-1, MGMT, PML,
PTEN, and E-cadherin.
To determine whether these two clusters might represent

clinically distinct subgroups of patients, univariate survival
analysis was done. Cluster 2 was associated with poorer
prognosis compared with cluster 1 (P < 0.0001; Fig. 3C), and
multivariate analysis, including pTNM stage and the above
cluster-based molecular classification, showed that the classifi-
cation was an independent prognostic indicator of survival
(P = 0.013; Table 5). Kaplan-Meier survival curves stratified by
pTNM stage (stages I-IV) revealed that cluster 2 was associated
with a probability of lower survival for patients with stage I or II
cancer (P = 0.0005 and 0.0020, respectively; Fig. 3D and E).
Supervised analysis using the SVM algorithm. After 1,000

iterations, the genetic algorithm selected nine protein classifiers
(CEA, c-fos, caspase-1, c-kit, cytokeratin6, cytokeratin19,
S100A4, HDAC1, and DNA-PKcs) which showed the best
classification performance compared with other combinations
of tumor-associated genes in the whole data set. The prediction
accuracy of these classifiers for patient survival was 73.1%
(sensitivity, 36.7%; specificity, 94.7%). When 421 samples of
stage I and II tumors were analyzed, the prediction accuracy was
88.1% for nine classifiers (MUC2, MUC6, smad4, PTEN,

MGMT, TCF4, rad9, cytokeratin8, and S100A6). The sensitivity
of these classifiers in stage I and II tumors decreased (30%),
whereas the specificity increased (99.3%). The molecular
classifiers for the data set of stage III and IV tumors (n = 220)
were p53, p16, KAI1, TCF4, IRS-1, cytokeratin6, GST-p, and
osteonectin. The prediction accuracy for patient survival was
reduced to 76% compared with that of the classifiers in stage I
and II tumors. Sensitivity and specificity for prediction of
patient survival showed different features. Sensitivity increased
sharply (95.5%) and specificity decreased (33.8%). Results are
listed in Table 6.

Discussion

Gastric cancer is a heterogeneous disease histologically and
genetically. Histologically, it is subdivided into intestinal and
diffuse types by Lauren classification (4), but some gastric
cancers cannot be easily classified in this way because these
two types are frequently admixed within single tumors.
Moreover, it is controversial as to whether Lauren’s classifica-
tion is an independent prognostic factor. Genetically, many
earlier studies have reported genetic alterations during gastric
carcinogenesis and progression, e.g., p53 mutations (29),
microsatellite instability (30), EBV infection (31), CpG island
methylation (32), and chromosomal instability (33). Thus,
gastric cancer is associated with various genetic alterations
and no single genetic marker can predict gastric cancer
biology or prognosis. The potential use of combinations of
biomarkers instead of a single marker or histologic feature has
been previously commented upon (19, 22, 34). Moreover,

Table 4. Prediction of lymph node metastasis in 187 early gastric cancers

Lymph node metastasis (no. of patients) Logistic regression analysis

Absent Present Total P value Odds ratio (95% confidence interval) P

Clustering 0.026 0.027
Cluster 1* 137 21 158 1.00
Cluster 2 20 9 29 3.098 (1.135-8.456)

Depth <0.001 0.002
Mucosa* 85 5 90 1.00
Submucosa 72 25 97 5.329 (1.870-15.186)

Lymphatic invasion 0.006 0.070
Absent* 148 23 171 1.00
Present 9 7 16 2.928 (0.915-9.372)

Lauren classification 0.725 — —
Intestinal 84 15 99
Diffuse 73 15 88

*Patients in this category served as the reference group.

Table 5. Multivariate analysis for factors predictive
of survival (Cox proportional hazards model)

Prognostic factor Hazard ratio
(95% confidence
interval)

P

Molecular classification
Cluster 2 versus cluster 1 1.418 (1.075-1.869) 0.013

pTNM stage
II-IV versus I 12.091 (7.079-20.652) <0.001

Molecular Classification of Gastric Cancer

www.aacrjournals.org Clin Cancer Res 2007;13(14) July15, 20074161



high-throughput analysis based on formalin-fixed tissues is
possible using the tissue array method. Recent studies have
applied tissue array methods to the molecular classifications of
various cancers such as breast and brain tumors (20, 35), and
protein expression profiling has been found to be clinically
useful for the prognostic classification of neoplasms. The
present study shows that a molecular classification of gastric
cancer can be accomplished based on hierarchical cluster
analysis of the immunohistochemical profiles of tumor-
associated biomarkers using tissue array sections.
The tissue array method enabled us to immunostain 659

formalin-fixed gastric cancer specimens with 56 tumor-associ-
ated antibodies. Moreover, using the large amount of data
generated, various hierarchical cluster analyses could be done.
The overall protein expression patterns defined four survival-
associated clusters, i.e., cluster A (24 cases), cluster B1
(57 cases), cluster B21 (140 cases), and cluster B22 (380 cases).
Patients with cluster B22 cancers had the best prognosis among
the four clusters (P < 0.0001). However, 56 markers are too
many for practical use. To more accurately predict patient
survival, and to reduce the number of markers, we did a feature
selection using Kaplan-Meier survival analyses. Twenty-seven
survival-associated proteins were selected as described in
Materials and Methods. Tumors were separated into two main
branches by hierarchical clustering, i.e., cluster 1 (356 cases)
and cluster 2 (256 cases), and these two clusters were found to
have distinct clinicopathologic features and patient outcomes.
Recently, the incidence, and thus the importance, of small

and early gastric cancers have increased because of the increased
use of upper gastrointestinal endoscopy (8). Minimal resection
and surgery such as endoscopic mucosal resection and
laparoscopic surgery have been increasingly used to treat early
gastric cancer (36). Moreover, the prediction of lymph node
metastasis in endoscopic mucosal resection specimens is
clinically important and the prediction of patient survival in
early gastric cancer specimens would allow accurate decision-
making concerning postoperative management. In the present
study, Kaplan-Meier survival curves that were stratified accord-
ing to pTNM revealed that cluster 2 was significantly associated
with poor survival for stage I and II cancers (P = 0.0005 and
0.0020, respectively). Our study contained 187 cancers that
were limited to the mucosa or submucosa (pT1). Cluster 2
cancers were also more associated with the presence of
metastatic lymph nodes in 187 early gastric cancers (pT1;
P = 0.026), independently of lymphatic invasion (P = 0.035),
indicating that the molecular classification may be applied to
the prediction of lymph node metastasis or prognosis in early
gastric cancer.
Using the protein dendrogram, 27 survival-associated pro-

teins were classified into three groups. Whereas group 1
consisted of proteins overexpressed in gastric cancer, group 3
consisted of proteins lost in gastric cancer. In a previous study
of breast cancer (20), a protein dendrogram revealed four
major protein clusters, i.e., estrogen receptor–associated
proteins, a differentiation cluster, a mitosis cluster, and a
proliferation cluster. However, in the present study, the protein
groups were not well defined, which is probably due to the
more heterogeneous nature of gastric cancer.
In this study, the classifications based on the 27 selected

proteins were significantly associated with clinicopathologic
features and prognosis. However, 27 proteins are too many for

routine use. To obtain an optimal number of protein classifiers
for the accurate prediction of patient outcome, 1,000 iterations
were done using the genetic algorithm, and as a result, nine
classifiers were chosen in the whole data set with a prediction
accuracy for patient outcome of 73.1%, sensitivity of 36.7%,
and specificity of 94.7%. When 421 stage I and II samples were
analyzed, another nine classifiers were chosen and prediction
accuracy was 88.1%, sensitivity was 30%, and specificity
was 99.3%. The identified classifiers for the stage III and IV
samples (n = 220) were p53, p16, KAI1, TCF4, IRS-1, cyto-
keratin6, GST-p, and osteonectin, and these had a prediction
accuracy of 76%, sensitivity of 95.5%, and a specificity of 33.8%.
These classifier numbers were found to be optimal for practical
use in pathology laboratories. There was a large gap between the
sensitivity and specificity of the classification analysis. This
result was due to our analysis scheme. In this analysis, we used
the genetic algorithm to select an optimal subset of tumor-
associated genes that yielded the highest prediction accuracy
with a 10-fold cross-validation. During selection, only the
prediction accuracy was considered. The selected classifier
genes therefore generated the optimal prediction accuracy with
the sacrifice of sensitivity or specificity. Even if the sensitivity
was low, the classifier genes from stage I and II data could
be applied as indicators for good prognosis because the spe-
cificity is high. In cases with classifiers from stage III and IV, they
could be used as the screening test for unfavorable outcome
because the sensitivity is high. Further validation is needed
concerning the use of the above classifiers for routine pathologic
diagnoses.
In summary, we immunostained 659 consecutive gastric

cancers with 56 tumor-associated antibodies using the tissue
array method. With 27 survival-associated gene products, the
hierarchical cluster analysis identified two clusters with
different clinicopathologic features and prognoses. Moreover,
the molecular classification predicted lymph node metastasis
and prognosis in early stage gastric cancer. To optimize
classifier numbers and accurately predict patient outcome,
we did the supervised analysis using the SVM algorithm.
The genetic algorithm selected nine classifiers in the whole
data set, another nine classifiers in stages I and II, and eight
classifiers in stages III and IV. Prediction accuracies for the
patient outcomes of these classifiers were 73.1%, 88.1%, and
76%, respectively.
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Table 6. Prediction forpatient outcomeofmolecular
classifications by supervised analysis using the SVM
algorithm

Prediction
accuracy (%)

Sensitivity
(%)

Specificity
(%)

Whole data set 73.1 36.7 94.7
Stage I and II
data set

88.1 30 99.3

Stage III and IV
data set

76 95.5 33.8
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