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Abstract

Clustering algorithms have been shown to be useful to explore large-scale gene expression profiles. Visualization and objective

evaluation of clusters are two important considerations when users are selecting different clustering algorithms, but they are often

overlooked. The developments of a framework and software tools that implement comprehensive data visualization and objective

measures of cluster quality are crucial. In this paper, we describe a theoretical framework and formalizations for consistently de-

veloping clustering algorithms. A new clustering algorithm was developed within the proposed framework. We demonstrate that a

theoretically sound principle can be uniformly applied to the developments of cluster-optimization function, comprehensive da-

ta-visualization strategy, and objective cluster-evaluation measures as well as actual implementation of the principle. Cluster

consistency and quality measures of the algorithm are rigorously evaluated against those of popular clustering algorithms for gene

expression data analysis (K-means and self-organizing maps), in four data sets, yielding promising results. � 2002 Elsevier Science

(USA). All rights reserved.
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1. Introduction

A general question in many research areas is how to
organize observed data into meaningful structures. In a
typical DNA microarray experiment, expression levels
of thousands of genes are systematically recorded over
tens of different samples (i.e., cell lines or tissues).
Cluster analysis can be applied to explore the underlying
similarity structures of observations and generate hy-
pothetical clusters. Clustering algorithms have been di-
dactically classified into two major categories,
hierarchical and partitional. The former results in nested
clusters, and the latter results in non-nested clusters.
Both hierarchical and partitional algorithms can be

implemented using an agglomerative or a divisive par-
adigm.
Hierarchical clustering algorithm transforms a pair-

wise (dis)similarity matrix of objects (or patterns) into a
sequence of nested partitions, for example, a phyloge-
netic-type hierarchical tree (or a dendrogram). An ag-
glomerative algorithm joins similar objects together into
successively larger clusters in a bottom-up fashion (i.e.,
from the leaves to the root of the tree) by relaxing the
threshold for joining objects or sets of objects [1]. This
type of algorithm has been used extensively in gene ex-
pression analysis [2,3]. A variety of heuristics such as
single-link, complete-link, and minimal spanning strat-
egies can be used to determine when to merge objects
and/or clusters.
A divisive algorithm forms clusters in the reverse

order. For example, threshold-based clustering [4] starts
with a completely connected graph from which edges
(i.e., the ‘‘glue’’ that connects one object to a cluster
or another object) are successively deleted to reveal
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�naturally emerging� clusters (i.e., sets of objects) at a
certain threshold. This algorithm has also been used in
gene expression analysis [5,6]. Creating a hierarchical-
tree structure in a divisive top-down fashion (i.e., from
the root to the leaves of the tree) by defining successive
�optimal� binary partitions was also successfully applied
in functional genomics. Some authors used graph theory
[7] and others used geometric space-partitioning princi-
ples [8] to accomplish this task.
Partitional clustering algorithms define a partition of

objects into K clusters, such that the objects in a cluster
are more similar to each other than to objects in dif-
ferent clusters. The value of K may or may not be given
a priori. The clusters are not nested. A clustering crite-
rion may be adopted to minimize within-cluster scatter
or maximize between-cluster scatter [9]. A wide range of
partitional algorithms have been successfully used to
analyze gene expression data, including K-means [10,11],
self-organizing maps (SOM) [12,13], CAST [14], and
MCLUST [15].
The widely accepted dichotomy between the hierar-

chical and partitional clustering is misleading because it
does not refer to a fundamental difference in the clus-
tering principle. Rather, it describes mere �procedural�
aspects of clustering algorithms (so does the dichotomy
between agglomerative and divisive categories). When
there is a clear �descriptive� definition, given the context
of particular data analysis, of what the �optimal� clus-
tering is, it should not matter whether the actual im-
plementation is hierarchical or partitional (or
agglomerative or divisive).
A hierarchical classification can be constructed as a

special nested sequence of partitions. It is possible to
develop clustering algorithms in which both strategies
are used. These strategies may strongly complement
each other in the analysis of complex data.

2. Prior work

We have previously reported on the matrix incision
tree (MITree) algorithm, a divisive hierarchical cluster-
ing algorithm that was able to reveal plausible clusters in
gene expression data [8]. Using an intuitive geometric
space-partitioning principle, MITree aims at iteratively
determining the hyperplanes that �optimally� partition a
high-dimensional data space into two lower-dimensional
subspaces, thereby creating a bifurcating hierarchical
tree. Global optimization strategies such as evolution
strategy [16] (i.e., a genetic algorithm) and deterministic
annealing (i.e., a simulated annealing) were also suc-
cessfully applied to the original algorithm.
From our previous experience with MITree, we ver-

ified that the hierarchical tree structure works best when
the data structure is intrinsically hierarchical. Complex
data like gene expression profiles tend to have mixed

structures and nested substructures of different types
that can best be captured by a proper combination of
hierarchical and partitional structures. This paper de-
scribes a framework and formalizations for the consis-
tent development of both hierarchical and partitional
clustering algorithms based on the same principle.

2.1. Visualization of clustering structures

An important objective of hierarchical clustering
approach is to provide a graphical overview of the data
so that it can easily be interpreted. The color-coded
expression patterns in accordance with a dendrogram
support visual analysis [2]. The relevance networks ap-
proach creates a proximity graph (i.e., a threshold graph
in which each edge is weighted according to its prox-
imity) that graphically represents the similarity structure
of data [5,6]. On the other hand, a threshold graph in
general can be converted to the corresponding dendro-
gram [9]. If a dendrogram is drawn from a proximity
graph and weighted with the proximity values, we call it
a proximity dendrogram. Therefore, any hierarchical
clustering algorithm can be seen as a method for
transforming a proximity matrix into a (proximity)
dendrogram or a threshold (or proximity) graph.
Partitional algorithms impose no or less structure on

their clustering solutions than their hierarchical coun-
terparts, partly due to their simple output, a cluster
membership function. SOM tends to put clusters of
similar patterns in neighboring cells and those of dif-
ferent patterns in distant cells. Tamayo et al. [13] argue
that the geometric-grid structure imposed on the clusters
by SOM is superior to the non-structure of popular
partitional clustering algorithms such as K-means. The
geometric-grid structure, however, represents only
qualitative (i.e., non-quantitative) inter-cluster associa-
tions that are difficult to interpret.
Because a hierarchical classification can be viewed as

a special nested sequence of partitions and a proximity
graph can be converted to a proximity dendrogram (and
vice versa), a unified view of the graphical representa-
tion of clustering structures having both hierarchical
and partitional components can be developed.

3. Method

3.1. Data hyperspace and incisional hyperplane

Fig. 1 illustrates data hyperspace and incisional hy-
perplanes. In the completely connected graphs, the
vertices represent objects and the edges represent asso-
ciations (or similarity measures) between objects. In
general, N objects and their geometric relationships can
be fully represented in ðN � 1Þ-dimensional hyperspace
and are separable into two lower-dimensional subspaces
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by a set of ðN � 2Þ-dimensional incisional hyperplanes
(Fig. 1a). When a hyperplane separates N objects into
two subgroups with m and n objects (N ¼ mþ n), the
plane deletes m � n edges among the total NðN � 1Þ=2
edges, and there are 2N�1 � 1 such binary incisional
hyperplanes. We call such binary incisional hyperplanes
as bi-incisional hyperplanes.
As shown in Figs. 1b and c, a high-dimensional data

space can be partitioned into more than two sub-spaces
by the union of bi-incisional hyperplanes, all with the
same dimensionality. We call the union of the bi-inci-
sional hyperplanes the multiple-incisional hyperplane.
When a multiple-incisional hyperplane partitions N ob-
jects into K subgroups of m1;m2; . . . ;mK members, the
hyperplane deletes

P
i<j jmijjmjj links among the total

NðN � 1Þ=2 links and the multiple-incisional hyperplane
can be represented as the union of K � 1 bi-incisional
hyperplanes that partially overlap (Figs. 1b and c).
It is worth noting that we intentionally used the

somewhat odd term, �incisional� hyperplane, to distin-
guish it from the separating hyperplane of support

vector machines (SVM), which typically means maxi-
mum margin hyperplane characterized by the kernel and
soft-margin-penalty functions in the statistical learning
theory [17]. Instead of creating a lower-dimensional soft
margin hyperplane with the small number of support
vectors selected from the total training examples for
supervised classification with SVM, we treated all N
objects as marginal cases just adjacent to the (N � 2)-
dimensional bi-incisional hyperplane for unsupervised
clustering.

3.2. Object similarity matrix

To manage such complex observations as gene ex-
pression data, we can view each gene or array as an
object and the associations between genes (or arrays) as
connecting edges between objects. In that way, we can
create a comprehensive N-by-N object similarity matrix
for N genes (or arrays).
Let M ¼ ðO;EÞ be an object similarity matrix con-

sisting of a set of objects and a set of connecting edges.
We denote the object set of M by OðMÞ, the edge set by
EðMÞ, and an edge between two objects by eðoi; ojÞ 2
EðMÞ, where oi; oj 2 OðMÞ. Any non-empty subset ofM
is called a cluster (including the object similarity matrix
M itself).
The (within-cluster) average similarity measure of a

cluster (or an object similarity matrix), SclusterðMÞ, is
defined as the mean similarity value of all the connecting
edges in the corresponding cluster. If Sðx; yÞ is a simi-
larity measure between objects x and y, then

SclusterðMÞ ¼ 1

jEðMÞjo2OðMÞ;i<j

X
Sðoi; ojÞ: ð1Þ

Similarly, the between-cluster average similarity mea-
sure, SbetweenðMi;MjÞ, is defined as the mean similarity
value of all between-cluster edges,

SbetweenðMi;MjÞ ¼
1

jOðMiÞjjOðMjÞj
X

ou2OðMiÞ;ov2OðMjÞ
Sðou; ovÞ:

ð2Þ

3.3. Matrix incision index

Fig. 2 is an equivalent but much more manageable
matrix representation of the hyperspace-partitioning
problem discussed in Fig. 1. An ðN � 1Þ-dimensional
space containing completely connected N objects with
NðN � 1Þ=2 connecting edges can be represented as an
N-by-N object similarity matrix. The rectangular area,
H, in Fig. 2a represents a bi-incisional hyperplane that
separates the high-dimensional space of N objects into
two lower-dimensional sub-spaces of jOðM1Þj and
jOðM2Þj objects represented by the triangular areas, M1

and M2, respectively (Fig. 2a).

Fig. 1. Data hyperspace and incisional hyperplanes. (a) N objects can

be arranged in ðN � 1Þ � D space and are separable by ðN � 2Þ � D bi-

incisional plane (i.e., dot, line, or plane). (b) A multiple-incisional hy-

perplane that partitions the vertices into more than two groups can be

viewed as the union of a set of bi-incisional hyperplanes that have the

same dimensionality. In this example, four objects and their edges can

be arranged in a 3-D space and separable into three subgroups by a set

of two 2-D bi-incisional hyperplanes. (c) Seven objects in 6-D hyper-

space are separated by two 5-D bi-incisional hyperplanes (or a multi-

ple-incisional hyperplane, which is the union of the two bi-incisional

hyperplanes) into three groups of one, three, and three members. Note

that this is a severely distorted 3-D representation of the 6-D hyper-

space, where all the 21 ðð7 � 6Þ=2Þ links can have any Euclidean length.
The multiple-incisional hyperplane deletes 15 ð3 � 3þ 1 � 3þ 1 � 3Þ
edges and 6 ð3 � 2=2þ 3 � 2=2þ 1 � 0=2Þ edges will remain in the

separated three lower-dimensional sub-spaces.
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Let HðMÞ ¼ feðo1; o1Þ; . . . ; eðoi; ojÞg, HðMÞ � EðMÞ,
be a bi-incisional hyperplane, whose removal splits M
into two disjoint non-empty subsets, A and B, such that
A;B � M , OðAÞ [ OðBÞ ¼ OðMÞ, EðAÞ [ EðBÞ [ HðMÞ ¼
EðMÞ, and M ¼ ðOðAÞ [ OðBÞ;EðAÞ [ EðBÞ [ HðMÞÞ.
Therefore, the �optimal� binary partitioning problem of
this high-dimensional data space becomes a matrix in-
cision problem of finding the �optimal� bi-incisional hy-
perplane, HðMÞ, that minimizes the loss (a weighted
function of HðMÞ) and/or maximizes the gain (a
weighted function of EðAÞ and EðBÞ) of the partitioning.
Let P ðMÞ ¼ H1ðMÞ [ H2ðMÞ 
 
 
 [ Hk�1ðMÞ be a mul-

tiple-incisional hyperplane, whose removal splits M into
K disjoint non-empty subsets, M1 
 
 
MK � M , such that
OðM1Þ [ 
 
 
 [ OðMKÞ ¼ OðMÞ, EðM1Þ [ 
 
 
 [ EðMKÞ [ P
ðMÞ ¼ EðMÞ, and M ¼ ðOðM1Þ [ 
 
 
 [ OðMKÞ; EðM1Þ
[ 
 
 
 [ EðMKÞ [ P ðMÞÞ. Then, the problem of �optimal�
multiple matrix incision (or the �optimal� K partitioning)
is to find the �optimal� multiple-incisional hyperplane,
P ðMÞ, that minimizes a certain weight function of P ðMÞ
and/or maximizes a certain weight function of EðM1Þ;
. . . ;EðMKÞ.
We defined MIImax of a multiple-incisional hyper-

plane as the ratio of the weighted Scluster of a set of
clusters (M1; . . . ;Mk ) over the SclusterðMÞ. Therefore, the
�optimal� multiple partitioning can be obtained by
searching the multiple-incisional hyperplane of a simi-
larity matrix with the maximum MIImax,

MIImax ¼
1

SclusterðMÞ
X

i

jEðMiÞj
jEðMÞj SclusterðMiÞ: ð3Þ

3.4. MITree-K: the K-partitioning matrix incision tree
algorithm

The classical minimum graph quotient problem,
which is NP-complete (for review, see [18,19]), can be
viewed as a special case of the geometric space-parti-
tioning problem, which can therefore be solved using
these (generalizations of) approximation algorithms.
The geometric space-partitioning problem can be re-
duced to the classical minimum graph quotient problem
by adding, between every pair of vertices, an edge of
infinitesimal weight that has no effect on the values of
cuts but changes the number of edges crossing any cut to
the partitions. Multiple partitioning by determining the
�optimal� multiple-incisional hyperplane is obviously a
harder problem than the binary partitioning problem.
Our cluster-optimization strategies based on deter-

ministic annealing and evolution strategy [16] that were
successfully applied to the binary partitioning problem
were either computationally very expensive or inade-
quate in finding global optima for the harder problem of
multiple partitioning applied to complex gene expres-
sion data. Thus, we have developed an efficient heuristic
approximation algorithm by combining modified K-
medoids, which can be viewed as a special case of EM
(Expectation–Maximization) algorithm, and an inter-
vening incremental trimming-and-reassignment strategy,
which was introduced in our prior work [8], to facilitate
local search.
The MITree-K algorithm (Fig. 3) tries to find the

�optimal� multiple-incisional hyperplane, P ðMÞ, having
the maximum MIImax. It first creates a set of �candidate�
clusters using classical Voroni-type partitioning by a set
of iteratively converging cluster centers. Let Sobj be the
average similarity measure between an object and all the
others in its corresponding cluster,

SobjðxÞ ¼
1

jOðMÞj � 1

X

x;y2OðMÞ;x 6¼y

Sðx; yÞ: ð4Þ

The center of a cluster (or an object similarity matrix) is
defined as the object with the highest Sobj in the corre-
sponding cluster.
MITree-K tries to harmoniously maximize

SclusterðMiÞ�s by means of incremental trimming-and-re-
assignment strategy. It trims objects with smaller Sobj in
the �candidate� clusters to create a set of dense �core�
clusters. It then incrementally reassigns the trimmed
objects to the nearest �core� clusters. As the result of the
step may depend on the reassignment order, MITree-K
repeats the trimming-and-reassignment step by gradu-
ally increasing the sizes of the trimmed �core� clusters
and updating cluster centers at each step. For simplicity,
we increased the sizes of �core� clusters from 50% of the
corresponding �candidate� clusters gradually up to 80,
90, 95, and then to 100% in the present study.

Fig. 2. Matrix representation of data hyperspace, incisional hyper-

planes, and matrix incision indices (MIIs). (a) A bi-incisional hyper-

plane can be viewed as the rectangular area (H) that splits of an object

similarity matrix (M) into two sub-matrices ðM1;M2Þ. (b) A multiple-

incisional hyperplane that partitions M into K sub-matrices

ðM1; . . . ;MkÞ can be viewed as a union of ðK � 1Þ bi-incisional hyper-
planes (H1ðMÞ [ 
 
 
 [ HK�1ðMÞ). The maximum matrix incision index,

MIImax, for optimizing multiple-incisional hyperplane was defined as

the fraction of gain (i.e., the weighted means of within-cluster average

similarity measures of the K resulting clusters (M1; . . . ;MkÞ) from the

parent matrix (i.e., the average similarity measure of the similarity

matrix ðMÞ).
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3.5. Systematic matrix decomposition and reconstruction
for quantitative visualization of clustering structures

Clustering can be viewed as the decomposition pro-
cess of a similarity matrix M into a set of clusters
ðM1; . . . ;MkÞ and a multiple-incisional hyperplane,
P ðMÞ ¼ H1ðMÞ [ 
 
 
 [ Hk�1ðMÞ. The hyperplane can
also be decomposed into a set of KðK � 1Þ=2 �compo-
nent� bi-incisional hyperplanes between each pair of
clusters, fHðMi [MjÞ j i < j; 1 < j < Kg, as shown in
Fig. 4. Therefore, if we consider each cluster, Mi, as an
object and each �component� bi-incisional hyperplane,
ðHðMi [MjÞÞ, as a connecting edge between each pair of

clusters, a similarity matrix of the clusters,
MðfM1; . . . ;Mkg; fHðMi [MjÞ j i < j; 1 < j < KgÞ, can
be created to capture the quantitative relationships
among clusters.
The quantitative relationships among clusters can be

graphically represented as a cluster proximity graph,
where vertices are clusters and edges elementary bi-
incisional hyperplanes weighted by the between-cluster
average similarity measures of the corresponding hy-
perplanes, SbetweenðMi;MjÞ (see Fig. 4).
One may argue that it is just an obvious graphical

representation for any clustering solution. This is true
to a certain degree. However, defining (within- and

Fig. 4. Quantitative visualization of clustering structure by systematic matrix decomposition and reconstruction. The algorithm decomposes the input

similarity matrix into a set of clusters (A; . . . ;E) and a multiple-incisional hyperplane, PðMÞ, which can be decomposed into a set of �component� bi-
incisional hyperplanes (i.e., HAB;HAC; . . . ;HDE). A cluster-proximity graph that regards clusters as objects and bi-incisional hyperplanes as edges

provides quantitative visualization of clustering structure. Between-cluster distance is represented by cell darkness and line thickness in matrix and

graphical representations, respectively.

Fig. 3. MITree-K algorithm.
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between-) cluster similarity measures for the graphical
representation may not be clear and requires arbitrary
choices of measures in several other algorithms. It is not
always the case that similarity measures conform to the
corresponding cluster-optimization principles. This gets
even more complicated when one tries to further parti-
tion the initial clusters to reveal substructures (see Fig.
7). Notice that in our framework the (within- and be-
tween-) cluster similarity measures, SclusterðMÞ and
SbetweenðMi;MjÞ (i.e., all the triangular and rectangular
areas in Fig. 4), as well as the object similarity measure
are all uniformly defined as the mean edge weights of all
involved pairs of objects in a completely connected
graph model with no assumption on the data distribu-
tion. The systematic matrix decomposition and recon-
struction is a natural way of defining cluster similarity
measures in our framework for the measures are also
consistent in multilevel partitioning.

3.6. Evaluation data sets

Four well-studied data sets were used to evaluate the
MITree-K algorithm: Fisher�s iris data set [22], Golub�s
leukemia gene expression data set [20], Cho�s yeast cell-
cycle data set [21], and Iyer�s human fibroblast gene
expression data set [22]. The former two are tagged with
known class labels and the latter two are not.
Fisher�s iris data set consists of 150 observations of the

three species of iris flowers (50 Iris setosa, 50 Iris versi-
color, and 50 Iris virginica) and four discriminating
measurements (petal and septal length, and petal and
septal width). Golub�s leukemia data set has 6817 human
gene expression profiles of 74 cell lines (38 training and
34 test sets) of acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). The authors selected 50
genes that were most highly correlated with the AML/
ALL class distinction by a supervised learning algorithm.
Cho�s yeast and Iyer�s human fibroblast data sets were

used as real gene expression data sets that are unlabeled.
Cho et al. monitored the expression levels of 6218 S. ce-
revisiae gene transcripts at 10-min intervals over two cell
cycles (160min). Filtering of genes that do not change
significantly across samples returns 826 genes using the
same procedure reported by Tamayo et al. [13]. The data
preprocessing steps of removing 90-min time-point and
normalizing each expression to have mean zero and
variance one within each of the two cell cycles were also
performed. Among the 8613 gene expression profiles of
human fibroblasts stimulated by addition of serum after
deprivation, 517 genes whose expression levels changed
substantially across samples were analyzed.

3.7. Evaluation measures for consistency and quality

Clustering consistency and quality measures were
applied to compare MITree-K with the two popular

clustering algorithms, K-means and SOM, for gene
expression data analysis using the ‘‘CLUSTER’’ soft-
ware downloadable at http://rana.stanford.edu/soft-
ware/.
Averaged Rand index [23] was applied to measure

clustering consistency. Let CðPiðMÞ; PjðMÞÞ be a clus-
tering consistency between two sets of K clusters of M.
All edges in M, EðMÞ, can be divided into two disjoint
subsets, the concordant subset, Lconcordant ¼ fejðe 2 Pi
ðMÞ and e 2 PjðMÞÞ or ðe 2 EðMÞ � PiðMÞ and e 2
EðMÞ � PjðMÞÞg and the discordant subset, Ldiscordant ¼
fejðe 2 PiðMÞ and e 2 EðMÞ � PjðMÞÞ or ðe 2 EðMÞ�
PiðMÞ and e 2 PjðMÞÞg. Thus,

CðPi; PjÞ ¼
jLconcordantj

jLconcordantj þ jLdiscordantj
: ð5Þ

Adjustment of the index [24] was not needed because we
are comparing clustering solutions at equal-number
levels (see results). Clustering consistency of N trials is
defined as the average of all pair-wise clustering con-
sistency measures,

CN ¼ 2

NðN � 1Þ
X

i<j

CðPi; PjÞ: ð6Þ

For cluster quality, the homogeneity and separation
indices by Sharan and Shamir [7] were used. Homo-
geneity indices are the average and minimum corre-
lation coefficients between an object and the
fingerprint of its corresponding cluster (i.e., the mean
vector of the fingerprints of the members of the
cluster). If F ðxÞ and F ðMÞ are the fingerprints of an
object x and its corresponding cluster M, respectively,
and Correlðx; yÞ is the correlation coefficient of fin-
gerprints x and y, then

Havg ¼
1

jOðMÞj
X

x2OðMÞ
CorrelðF ðxÞ; F ðMÞÞ; ð7Þ

Hmin ¼ min
x2OðMÞ

CorrelðF ðxÞ; F ðMÞÞ: ð8Þ

Separation indices are the weighted average and the
maximum correlation coefficient between cluster finger-
prints:

Tavg ¼
1P

i<j jOðMiÞjjOðMjÞj

�
X

i<j

jOðMiÞjjOðMjÞjCorrelðF ðMiÞ; F ðMjÞÞ; ð9Þ

Tmax ¼ max
i<j

CorrelðF ðMiÞ; F ðMjÞÞ: ð10Þ

Thus, increased Havg and Hmin and decreased Tavg and
Tmax suggest better clustering solutions.
Notice that the weighted mean of average similarity

measures, Scluster, itself is also a good index for mea-
suring cluster homogeneity (instead of Havg). Applying
the same analogy to replace the other three indices is
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also possible. We used the above indices for the purpose
of �fair� comparison with other algorithms.
We created 2 and 3 clusters for Fisher�s iris data set

and 2, 3, and 4 clusters for Golub�s leukemia data set
(i.e., up to their known number of actual classes) with 30
repeated simulations to measure clustering accuracy,
quality, and consistency. Statistical significances of the
difference among the three algorithms for the five mea-
sures were tested by ANOVA (Analysis of Variance). A
p-value less than 0.05 was considered as significant and
the Duncan method was used for post hoc multiple
comparisons.
We created 10, 20, 30, 40, and 50 clusters for the

two untagged gene expression data sets with 30 rep-
etitions by the three algorithms ð2ðdata setsÞ �
5ðexperiments; K ¼ 10; 20; . . . ; 50Þ � 30ðrepetitionsÞ �
3ðalgorithmsÞ ¼ 900Þ and measured clustering quality
and consistency. The differences of the clustering
consistency and quality measures across different ex-
periments were tested by graphical plots and repeated
measures ANOVA in which the five variables were
considered as the repeated measures. A p-value smal-
ler than 0.5 was considered as significant. ANOVA
with the post hoc multiple comparison was applied to
compare the experiments.

4. Results

4.1. Fisher’s iris and Golub’s leukemia data sets

Binary partitioning (K ¼ 2) of the r2 (i.e., the square
of Pearson�s product moment correlation coefficient)
similarity matrix derived from Fisher�s iris data set
perfectly separated all setosa from the other species
(accuracy of 100%) by MITree-K. Tri-partitioning
(K ¼ 3) correctly clustered the three species with five
errors (accuracy of 95% (145/150)). All members of se-
tosa were correctly clustered together, two virginicas
(cases 9, 40) were incorrectly clustered with 48 versicol-

ors, and three versicolors (cases 66, 77, 81) were incor-
rectly clustered with 47 virginicas.
Interestingly enough, bi-partitioning (K ¼ 2) of the

74 cell lines from Golub�s leukemia data set perfectly
discriminated the 38 training and the 34 test set cases
instead of separating AML and ALL cases (Table 1).
The distinction between the training and test sets may
come from the potential differences between the inde-
pendently collected data sets, as described by Golub et
al. [21] In the tri-partitioning experiment (K ¼ 3), the
first cluster had 26 ALL�s of the training set, the sec-
ond cluster 24 AML�s with one ALL, and the third
cluster 20 ALL�s with one AML (72/74, 97% of accu-
racy). Quadri-partitioning (K ¼ 4) successfully recov-
ered all four natural groups with only two errors (72/
74, 97%).
One very important finding was that MITree-K could

successfully recover the three natural groups of leuke-
mia�s (i.e., B-ALL, T-ALL, and AML) from the training
set with only two errors, a classification performance
that is superior to that of previous studies [21]. One
B-ALL (case 12) was clustered with AML�s and another
B-ALL (case 17) with T-ALL�s in the present study with
MITree-K (36/38, 95%).
Table 2 demonstrates the clustering consistency and

quality measures of the three clustering algorithms in 30
trials using Fisher�s iris (K ¼ 3) and Golub�s leukemia
(K ¼ 4) data sets. In the analysis of Fisher�s iris data set,
MITree -K and SOM resulted in cluster consistency and
homogeneity scores that were significantly higher than
those resulting from K-means. Tests for clustering sep-
aration (Tavg and Tmax) showed no statistically significant
difference. For Golub�s leukemia data set, MITree-K
resulted in cluster consistency, homogeneity (Havg and
Hmin), and average separation (Tavg) that were signifi-
cantly higher than those resulting from the two other
algorithms. Tmax was best in MITree-K and K-means.
Tavg (K-means) was greater than TavgðSOMÞ and
C30ðSOMÞ was higher than C30ðK-meansÞ. HminðSOMÞ
was higher than HminðK-meansÞ.

Table 1

Clustering accuracy of MITree-K tested in leukemia gene expression data set [21]

K
Clinical class Case Data set

2 3 4

M1
M1 M1

26 ALL: 1–11, 13–27

Training set

M2

M2 11 AML: 28–38

1 ALL: 12

M2

M3 13 AML: 50–54, 57, 58, 60–65 Test set

M3 M4 20 ALL: 39–49, 55, 56, 59, 67–72

1 AML: 66

K, number of clusters; MK , clusters (or sub-matrices); AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia.
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4.2. Yeast cell-cycle and human fibroblast data sets

Fig. 5 shows a comparison of clustering consistency
measures after 30 trials, C30 (mean� SD), of the three
clustering algorithms applied to the yeast cell-cycle and
the human fibroblast data sets, with increasing number
of clusters (K ¼ 10, 20, 30, 40, 50). MITree-K algorithm
exhibited higher cluster consistency than the other al-
gorithms in most of the experiments cluster consistency
was significantly different among the three algorithms in
both data sets after adjustment for the increasing num-
bers of clusters by repeated measures ANOVA
(p < 0:0005). All the 10 (5 � 2) experiments (Figs. 5a and
b) exhibited significant difference by ANOVA
(p < 0:0005). In Fig. 5, algorithm names (designated as
M, K, and S for MITree-K, K-means, and SOM, re-
spectively) were separated by ‘‘/’’ when they were
grouped separately by the post hoc Duncan multiple
comparison method. The order of the algorithm names
represents the order of performances.
Fig. 6 demonstrates the cluster homogeneity and

separation measures of the three clustering algorithms.
Havg, Hmin, Tavg, and Tmin were all significantly different
for the three clustering algorithms in both data sets (by
repeated measures ANOVA (p < 0:0005) after adjust-
ment for the effect of the increasing numbers of clusters).
MITree-K demonstrated significantly higher homoge-
neity measures (Havg and Hmin) in all of the 20 (5 � 4)
experiments by ANOVA and the post hoc Duncan

Table 2

Comparison of cluster consistency and quality of three clustering al-

gorithms after 30 trials of clustering applied to Fisher�s iris [20] and
Golub�s leukemia [21] data sets

Index MITree-K K-means SOM

Fisher’s iris data set

C30z 1:000� 0:00� 0:914� 0:14 1:000� 0:00�

Havg
z 0:997� 0:00� 0:994� 0:00 0:997� 0:00�

Hmin
z 0:977� 0:00� 0:728� 0:10 0:977� 0:00�

Tavg 0:786� 0:00 0:783� 0:03 0:785� 0:00

Tmax 0:978� 0:001 0:979� 0:01 0:979� 0:00

Golub’s leukemia data set

C30z 0:999� 0:00� ;y 0:896� 0:69 0:932� 0:66�

Havg
z 0:778� 0:00� ;y 0:742� 0:03 0:738� 0:04

Hmin
z 0:478� 0:00� ;y 0:069� 0:10 0:361� 0:11�

Tavgz 0:108� 0:00� ;y 0:135� 0:02y 0:147� 0:03

Tmaxz 0:312� 0:00y 0:384� 0:12y 0:534� 0:20

All reported values are means�SD.
Increased homogeneity and decreased separation suggest better

clustering solution.

CN , consistency index with N trials; Havg, average homogeneity

index; Hmin, minimum homogeneity index; Tavg, average separation
index; Tmax, maximum separation index.

� p < 0:0005, significantly different among the three methods by

ANOVA.
* Significantly different by ANOVA and separated by the post hoc

Duncan multiple comparison method from K-means (p < 0:05).
� Significantly different by ANOVA and separated by the post hoc

Duncan multiple comparison method from SOM (p < 0:05).

Fig. 5. Comparison of the clustering consistency among three clustering algorithms with increasing number of clusters (K ¼ 10, 20, 30, 40, 50) for (a)

yeast cell-cycle [22] and (b) human fibroblast [3] data sets. MITree-K showed better clustering consistency in general. Plots and error bars are

mean� SD. M : MITree-K, K: K-means algorithm, S: SOM. Algorithm names are separated by ‘‘/’’ when they are significantly different by ANOVA

and separated by the posthoc Duncan multiple comparison method.
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multiple comparison method (p < 0:0005). Tavg was
higher in MITree-K and SOM than in K-means for both
data sets (Figs. 6c and d, left graphs). MITree-K showed
significantly higher Tmax than K-means and SOM in both
data sets (Figs. 6c and d, right graphs) by ANOVA and
the Duncan method (p < 0:0005).

4.3. Quantitative visualization of clustering structures for
further analysis

Fig. 7 demonstrates multilevel proximity-graph rep-
resentations of clustering structures created by systematic

matrix decomposition and reconstruction. For the pur-
pose of illustration, we created 20 clusters from the yeast
cell-cycle data, resulting three cluster proximity graphs
(i.e., clusters of clusters, Figs. 7a–c) and three singleton
clusters (Fig. 7d) at the threshold level of Scluster ¼ :25,
which can be determined using a permutation test [5]. We
represent the size (i.e., the number of members) of cluster
by the thickness of the borders and the similarity mea-
sures between clusters, Sbetween of the corresponding hy-
perplane, by the thickness of connecting edges.
In Fig. 7a, three (A, B, and C) among the seven

clusters that show two cell-cycle patterns with different

Fig. 6. Comparison of the clustering (a, b) homogeneity and (c, d) separation among three clustering algorithms with increasing number of clusters

(K ¼ 10, 20, 30, 40, 50) for (a, c) yeast cell cycle [22] and (b, d) human fibroblast [3] data sets. MITree-K showed the highest clustering homogeneity

measures (Havg and Hmin) in both data sets (a, b). Tavg showed a tendency to be better in MITree-K and SOM than in K-means (c, d; left graphs).

MITree-K showed lower (i.e., better) Tmax than K-means or SOM in both data sets (c, d; right graphs). Plots and error bars are mean�SD. M ,
MITree-K; K, K-means algorithm; S, SOM. Algorithm names are separated by ‘‘/’’ when they are significantly different by ANOVA and the post hoc

Duncan multiple comparison method. Increased homogeneity and decreased separation suggest better clustering solution.
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phases exhibit prominent cell-cycle patterns with two
distinct peaks. The quantitative relationships among
them are well represented by the connecting edges.
Cluster A shows the earliest peak, followed by clusters B
and then C. Clusters A and B (Sbetween ¼ :36) are similar
and clusters B and C are similar (Sbetween ¼ :27) but
clusters A and C are less similar (Sbetween < threshold).
The phase-lag pattern among A, B, and C are quanti-
tatively represented such that they are linearly ordered
to form ‘‘A–B–C–’’ pattern in the same cluster prox-
imity graph (Fig. 7a).
Cluster proximity graphs can be nested to create

multilevel representations capturing both hierarchical
and partitional similarity structures (Figs. 7e and f). For
example, cluster A in Fig. 7a, which shows the earliest
peaks in the upper level, was sub-partitioned to reveal
detailed sub-structures (Fig. 7e). For example, sub-

cluster D in Fig. 7e shows a cluster of genes demon-
strating even earlier peaks than A, B, or C as well as
distinct two-cycle pattern, which is evidently inherited
from the mother cluster A. Note that all the within- and
between-cluster similarity measures are quantitatively
visualized.

5. Conclusions

We have introduced a framework and formalizations
for the consistent development of clustering algorithms
that support both hierarchical and partitional structures
as well as quantitative visualization. Complex data like
gene expression profiles tend to have compound struc-
tures including both hierarchical and partitional sub-
structures. The complexity can best be explored by a

Fig. 6. (continued)
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flexible and proper data analysis strategy. Hierarchical
MITree [8] and the partitional MITree-K algorithm
presented here are based on the same cluster-optimiza-
tion principle, and may complement each other in the
systematic exploration of similarity structures.
The matrix-incision framework makes no assumption

on data distribution. It only uses very intuitive geometric
properties of unique observations, such that all the
within- and between-cluster similarity (and object simi-
larity) measures can be uniformly developed. In contrast
to the non-structure of K-means and the partial quali-
tative structure of SOM, the consistent development of
similarity measurements of MITree�s permits compre-
hensive multilevel quantitative visualization of similarity
structures and substructures. The graphical representa-
tion may even be improved by other methods for simi-
larity structure analysis. For example, multi-dimensional
scaling can be applied to map the similarity structures of

cluster proximity graphs, while maintaining the con-
necting edges and their weights between clusters.
In the comparison study with popular partitional

clustering algorithms (K-means and SOM), MITree-K
demonstrated higher accuracy, consistency, and quality.
One widely known problem of center-based clustering
algorithms such as (the non-soft implementations of) K-
means and SOM is that they are sensitive to the ini-
tialization of the centers. Their winner-takes-all strategy
makes the association between the data points and the
local center so strong that the membership of a data
point may be resistant to change. Although the basic
MITree-K algorithm also relies on randomly initialized
matrix centers, the matrix centers are designed to be
non-fixed and free-floating, a feature that is achieved by
using the incremental trimming-and-reassignment
strategy that works also as a scheduling function for the
optimization. The matrix centers are locally optimized

Fig. 7. Quantitative multilevel graphical representations of both hierarchical and partitional clustering structures of complex gene expression data

(see results).
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in each trimming-and-reassignment step. We have also
observed the matrix centers to converge rapidly (within
3–7 iterations), which may explain part of the lower
sensitivity of MITree-K to outliers. The fundamental
difference is that we use all pair-wise measures to de-
termine cluster ‘‘centers,’’ instead of using simple mean
vectors (or centroids). Dynamic matrix centers with lo-
cal optimization strategy may have been responsible for
the improved clustering accuracy, consistency, and
quality of MITree-K. We are currently investigating this
issue.
The matrix-incision principle provides a consistent

framework for clustering, by effectively separating the
three basic layers of cluster analysis, i.e., (1) the choice
of similarity measure, (2) the definition of cluster opti-
mality, and (3) the implementation of the actual algo-
rithm.
The significance of this work in terms of clinical or

biological importance can be summarized as follows.
Clustering algorithms have been extensively used in the
clinical and genomics literature to facilitate knowledge
extraction from large databases. The algorithms have
been applied in an ad-hoc manner, and few authors
justify their choices of similarity measures, cluster-op-
timization function, and algorithms. We describe a
framework for cluster analysis and propose a consis-
tent-optimization function, and a compatible algo-
rithm. We show that our framework is sensible and
that the implemented algorithm compares favorably to
two popular clustering algorithms in terms of cluster
accuracy, consistency, and quality. MITree-K also
provides the extra benefit of allowing quantitative high-
dimensional visualization of the resulting clusters. Our
implementation can be found at http://www.snubi.org/
MITree.
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