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Abstract: To identify genomic regions associated with individual gene’s 
expressions, genetical genomic approaches have been developed. The approach 
treats each gene expression value as a trait to determine the genetic factor that 
explains the variance of the mRNA expression. However, genes often 
demonstrate coordinated activities and the patterns and levels of coordination 
are also regulated. In this research, we present a method, the Differential 
Allelic Co-Expression (DACE) test that identifies the regulatory association 
derived by alteration of co-expression patterns within a molecular pathway 
according to allelic difference of a certain SNP.

Keywords: genetical genomics; gene sets; co-expression; regulator. 

Reference to this paper should be made as follows: Woo, J.H., Zheng, T. and 
Kim, J.H. (2008) ‘DACE: Differential Allelic Co-Expression test for estimating 
regulatory associations of SNP and biological pathway’, Int. J. Functional 
Informatics and Personalised Medicine, Vol. 1, No. 4, pp.407–418. 

Biographical notes: Jung Hoon Woo received the BS Degree in Biochemical 
Engineering from Seoul National University in 2005 and the MS Degree  
in Bioinformatics in 2007. He is currently a research scientist in the 
Bioinformatics Research Center at Macrogen, Inc. 

Tian Zheng received her PhD in Statistics from the Department of Statistics  
at Columbia University in 2002. She was an assistant professor of Statistics at 
Columbia from 2002–2007 and has been an associate professor of Statistics  
at Columbia since July 2007. 



      

      

      

   408 J.H. Woo et al.    

      

      

      

      

Ju Han Kim received his MD and PhD Degrees from Seoul National University 
(SNU) and completed his residency training in neuro-psychiatry at SNU 
Hospital in 1996. He obtained an MS Degree in Biomedical Informatics at 
MIT. He was an Assistant Professor of Medicine in Biomedical Informatics, 
Children’s Hospital Informatics Program at Harvard Medical School.  
He is currently an Associate Professor of Seoul National University College  
of Medicine. 

1 Introduction 

Investigating the complex genetic interactions underlying molecular phenotypic 
variations has been a focal point in the field of biomedical research (Cheung and 
Spielman, 2002). Recently, the ‘genetical genomics approach’, which integrates large 
scale genotype data and high-throughput genomics data, like micro-array molecular 
profiles, has been established and offers a new perspective. This method treats  
gene expression profiles as quantitative traits and searches for genomic variation  
which can explain the variance of the molecular traits (Jansen and Nap, 2001;  
Brem et al., 2002; Schadt et al., 2003; Morley et al., 2004; Bystrykh et al., 2005).  
The scheme of this approach is very similar to most common micro-array analyses. 
Assuming that genes are individually expressed, this approach has shown insufficiency 
when investigating the complicated regulatory mechanism of transcriptome (Mootha  
et al., 2003; Lan et al., 2006).  

To take regulatory conditions for functionally related genes into consideration, 
several methods have been proposed in DNA micro-array data analysis. For instance, 
Mootha et al. (2003) introduced the Gene Set Enrichment Analysis (GSEA) test, which 
focuses on gene sets, groups of genes that share common biological function, to identify 
genes sets differentially expressed for corresponding stimuli. Similar approaches have 
been applied in the area of genetical genomics, such as Lan et al. (2006) and Ghazalpour 
et al. (2005). With genome-wide SNP genotype data, they performed Quantitative Trait 
Locus (QTL) mapping for each gene expression trait, first. It was followed by applying 
GSEA (Ghazalpour et al., 2005) or Gene Ontology (GO) (Ashburner et al., 2000) 
enrichment analysis (Lan et al., 2006) when excessive numbers of expression traits had 
linkage or association with a single locus. Lan et al. (2003) also utilised Principal 
Component Analysis (PCA) to summarise expressions of multiple genes and identified 
SNP regulator which explained variance of the principal component. The studies 
addressed the issue of the single gene approach and intended to identify the regulator of 
related multiple genes. Both of the studies focused on identifying the co-regulators of a 
set of genes or the regulators of common variations of multiple genes. However, 
regulators of a molecular pathway may affect not only the expression levels of these 
genes but also the extent to which they are inter-correlated. 

In this analysis, we focused on the correlation structure derived from the expression 
profiles of multiple genes. The level of correlation between the expression values of two 
transcripts is now commonly used to define co-expressions of functionally related genes 
(Eisen et al. 1998). Transcripts that are regulated by a common regulator will show  
high correlation under the functioning variant of the regulator but not so under the  
non-functioning variant. We hypothesise that if a genetic regulator affects a gene set,  
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the correlation tendencies among the set would vary as the genotypic differences of  
the regulator (Figure 1). In this study, we designed a Differential Allelic Co-Expression 
(DACE) test to identify the regulatory association between a SNP marker and a-priori 
gene set chosen based on previous knowledge. We chose Pearson’s r as the measure of 
co-expression and modelled it by an allelic linear model depending on the genotypes of a 
given marker. Through the DACE test, we showed putative genetic regulators which 
affect co-expression in biological pathways. 

Figure 1 A hypothetical pathway with an upper cascade regulator. Gene A is in the upper 
cascade of a four-gene pathway. When one has the variant red in the promoter region
of gene A on the genome, the Transcription Factor (TF)-  binds and leads to the 
expression of gene A, which, in turn, regulates genes B, C and D and their interactions. 
When the variant blue is present in the promoter of A, TF-ß binds and gene A is 
suppressed. Genes B, C and D will show different interacting patterns due to other 
regulation they receive (see online version for colours)

2 Methods 

2.1 Differential Allelic Co-Expression (DACE) test 

The DACE test is performed between a given gene set and a given SNP marker. It tests 
correlation structure differentiation of mRNA transcripts due to a SNP’s genotype. 
Assume that expression phenotypes and SNP genotypes are measured on n subjects.  

Given a SNP, subjects are divided into its G genotypes. To study a set of p transcripts
(expression phenotypes), first compute, within each genotype group, the Pearson 
correlation coefficients (Pearson, 1900) of the expression levels between all pairs of 
transcripts in a set. Denote rijg as the correlation between transcripts i and j within 
genotype group g. Correlation coefficients are not normally distributed (Fisher, 1921). 
For our test, we perform the ‘Fisher’s z’ transformation’ (Fisher, 1921) on the original 
correlation values as follows: 
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To test whether the SNP under study has a significant effect on the levels of correlation 
among these genes, we adopt the general framework of a linear model: 

0 1ijg g ijgZ B B X  (2) 

where z is defined as above and Xg represents genotype variation. For an SNP with 
alleles A and B, we code Xg 0 for genotype AA, 1 for genotype AB and 2 for genotype 
BB. Therefore, the t test for H0: ß1 = 0 vs. H1: ß1 = 0 searches for significant allelic
association between an SNP and the trait of interest (correlations). 

2.2 Compilation of gene set 

Publicly available pathway information was used to group genes. These data were 
obtained from publicly available pathway resources (BioCarta, http://www.biocarta.com/ 
genes/allPathways.asp; KEGG, Kanehisa et al., 2004) for mapping genes to pathways.  
A total of 276 pathways were present for the 12,488 probes on the Affymetrix U74Av2 
array. 

2.3 Integrated data set of BXD RI strains 

We targeted BXD recombinant inbred strains derived from 2 parental inbred strains, 
C57BL/6 (B6) and DBA/2. The usefulness of the strains in genetic mapping has led to 
genetic studies of a wide variety of phenotypes (Chesler et al., 2005). We downloaded 
DNA micro-array data sets which measure transcriptome expression in Hematopoietic 
Stem Cell (HSC) across 22 BXD RI strains (Bystrykh et al., 2005), from the National  
Center for Biotechnology Center (NCBI) Gene Expression Omnibus (GEO). Affymetrix 
U74Av2 arrays were used for HSC transcriptome profiling. For each chip, we computed 
12,488 gene expression values for the Affymetrix data using the Robust Multichip 
Average (RMA) algorithm (Irizarry et al., 2003) which uses background adjustment, 
quantile normalisation and summarisation. The genotype data of the 22 BXD RI strains 
of mice were downloaded from webQTL (Chesler et al., 2004) on the GeneNetwork 
website (http://www.genenetwork.org). The original BXD genotype data file included a 
set of 3795 markers, both SNPs and micro-satellites. We chose 3033 SNP genotypes for 
our study. 

3 Result 

We assembled both gene expression data and genotype data, assuming that the genotype 
of each RI strain was fixed, and compiled a new BXD RI data set as a meta data for 
applying DACE test (see Methods). We hypothesised the regulatory association between 
a genomic locus and gene set when the extent of inter-correlations significantly varied 
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between genotypes. The DACE test described in the Methods section was used to identify 
the regulatory association in the BXD RI data set. 

A total of 276 gene sets was configured by pathway information (see Methods). Due 
to computational concerns, we restricted ourselves to pathways with fewer than 30 gene 
members. As a result, the test was performed using 233 pathways and 3033 SNP markers. 
The False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) was controlled at 
< 0.001. Fifteen pathways showed significant association with at least one SNP locus. 
Five of these, some of which play critical roles in HSC function, are listed in Table 1.  
A complete list of the association found between the 15 pathways and 132 loci is 
provided in Supplement Table 1. 

Table 1 Gene sets with significantly associated region from the DACE test

Gene set (= pathway) Chr cM p-value FDR 
IL-10 Anti-inflammatory signalling 13 1.22 – 4.69 6.59e–07 1.53e–04 
B Lymphocyte cell surface molecules 5 0.28 – 16.89 2.097e–07 1.82e–04 
Role of Tob in T-cell activation 6 84.03 – 88.47 8.99e–07 2.47e–4 
IL22 Soluble receptor signalling 7 39.60 – 41.93 1.19e–07 4.00e–05 
Msp/Ron receptor signalling 2 138.89 – 139.78 3.84e–06 2.77e–04 
 4 2.44 – 6.29 6.24e–06 3.57e–04 
 6 82.28 – 102.25 7.89e–12 4.79e–09 
 9 5.18 – 5.19 1.40e–11 5.31e–09 

17 37.99 – 48.75 2.76e–07 2.14e–05 

For comparison, we performed the widely used single gene tests on the same data set,  
in which the association between gene and locus detected by the DACE test cannot  
be detected. Therefore, the set-wise co-expression regulators, identified using our 
approach, are different from (and possibly complementary to) the gene set (or GO) 
enriched regulatory regions studied by Lan et al. (2006) and Ghazalpour et al. (2005).  
For example, using the DACE test, the role of Tob in the T-cell activation pathway 
showed significant association with SNP markers within the region 84.03-88.47 cM on 
chromosome 6. On the other hand, none of the 17 genes comprising this pathway showed 
association with the same SNPs in single gene tests. These results indicate that none of 
the 17 transcripts have differentiated expression levels across the genotype groups of this 
locus (Figure 2(b)). Rather, the extent and patterns of correlation among the transcripts 
are significantly different between the two genotype groups (Figure 2(c)). 

In this paper, we detected SNPs that were associated with the difference in the 
correlation structure among genes in a pathway. To elucidate the biological meaning for 
the significant association between the genomic loci identified and the correlation 
relation among the genes in a specific pathway, we examined their positional relation on 
the genome and in the regulatory network. 

We hypothesise, as one possible biological interpretation, that if a certain genomic 
locus regulates the expression of genes in the upper cascade of a specific pathway,  
this locus might show significant association with the pathway in the DACE test. 
Therefore, we examined, in the regulatory network of known biological interactions, the 
positional relation between the significant genomic regulatory loci for a specific pathway 
identified by the DACE test and the genes in this pathway. More specifically, for a 
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pathway with a significant genomic regulatory locus returned by the DACE test,  
we located the members of this pathway on the genome and identified those that were 
adjacent to the identified regulatory locus. Here, we empirically defined adjacent genes 
as those located within 10 Mbp from the physical location of the identified regulatory 
locus. Among the 15 significant pathways with significant loci identified, seven pathways 
have at least one gene member that is adjacent to the regulatory genomic loci returned by 
the DACE test. The results are provided in Supplement Table 2. 

Figure 2 Genome-wide DACE test results for the role of Tob in the T-cell activation pathway.  
(a) Genome-wide distribution of negative log10 of p-values from the DACE test.
The horizontal red line is our threshold (FDR < 0.001); (b) Heatmap for the gene 
expression matrix. There is no significant change of expression level between two 
groups when each gene is considered individually and (c) Heatmaps for the correlation 
matrices. Hierarchical clustering was done on the genes to show clearer patterns
(see online version for colours)

We found that most of the adjacent genes were positioned as candidate regulators on the 
upper layer of corresponding pathway. In the case of the Cyclin E Destruction pathway,
the “chr2. 149122813 – 159760664” locus was detected as a putative genomic regulator 
of the pathway by the DACE test (p value < 2.59E–06). The E2F1 gene, a member of the 
Cyclin E Destruction pathway, has been physically located within the locus of  
“chr2. 149122813 – 159760664”, next to the identified regulatory locus (Figure 3).  
By the single gene association test, the E2F1 gene and the regulatory locus did not show 
significant association after correcting for multiple comparisons (minimum  
p-value = 0.0639). 

In this study, we designed the DACE test based on ordinary simple linear regression  
and the regression coefficient was used as a parameter to identify differentiation of 
correlation structure. We, therefore, used the permutation procedure to obtain empirical  
p-values for regression coefficients since the distribution of statistics may deviate from 
normality. For each permutation, we randomly reassigned the genotypes of a given  
SNP to the 22 samples and repeated the DACE tests, measuring the association between 
the correlation structure of the mRNA transcripts and the shuffled genotypes of the SNP. 
The procedure was repeated 1000 times to get empirical p-values of the original test 
results. We performed the permutation test for the 15 previously identified significant 
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pathways and FDR was controlled at <0.05. Not all associations originally identified by 
the DACE test were significant in the permutation procedure, but strong signals were still 
captured by the permutation test (Table 2). 

Figure 3 Physical map of the genomic regulator identified for the Cyclin E Destruction pathway 
(see online version for colours) 

Table 2 Significant association identified by permutation procedure 

Gene set (= pathway) Chr cM Perm p FDR 
Cytokines and inflammatory response 6 85.48–86.38 0.0 0.0 
The Co-stimulatory signal during T-cell activation 3 96.78–97.06 0.0 0.0 
Role of tob in T-cell activation 6 84.61 0.0 0.0 
The role of FYVE-finger proteins in vesicle transport 6 91.14–96.24 0.0 0.0 

12 57.72 0.0 0.0 
Regulation of hematopoiesis by cytokines 7 80.62 0.0 0.0 
IL22 soluble receptor signalling pathway 7 40.51 0.0 0.0 
Cyclin E destruction pathway 2 93.84–105.82 0.0 0.0 

5 0.28 0.0 0.0 
E2F1 destruction pathway 18 102.66–102.67 0.0 0.0 

2 93.85–104.67 0.0 0.0 
 5 0.28–2.79 0.0 0.0 
Visceral fat deposits and the metabolic syndrome 5 66.21–66.49 0.0 0.0 

7 50.97–55.97 0.0 0.0 
Regulation of p27 Phosphorylation during cell cycle 
progression

2 86.43–104.65 0.0 0.0 

5 0.29–10.84 0.0 0.0 
9 15.96 0.0 0.0 

Angiotensin-converting enzyme 2 regulates heart 
function

6 64.75–72.38 0.0 0.0 

CBL mediated ligand-induced down regulation of 
EGF receptors 

6 91.14–92.72 0.0 0.0 

10 87.31–89.36 0.0 0.0 
15 18.39–23.87 0.0 0.0 
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Chesler et al. (2005) and Morley et al. (2004) suggested that functionally related  
genes are genetically correlated. In the previous studies, a certain locus was identified  
as regulator of multiple genes’ expression, and the common locus was referred to as 
regulatory hotspot. In this study, we identified a common locus for multiple gene sets, 
and thought that the identified locus represents genetic similarities among mapped gene 
sets. We performed hierarchical clustering of the 178 pathways used in previous DACE 
tests based on their association signal at individual SNP loci. The clustering was done 
using results of the DACE test which were 178 negative log10 p-value vectors length 
3033. In other words, these 178 pathways were clustered by their similarity in significant 
genetic regulators of their within set co-expressions. Observed vertical patterns in  
the Figure 4(a) indicate the genetic similarity of pathways at certain genomic loci.  
For example, 5 pathways made the vertical bands at chromosome 6, and it might  
suggest that the pathways have genetic similarity corresponding to a locus at 
chromosome 6 (Figure 4(b)). These pathways includes The role of FYVE-finger proteins 
in vesicle transport, CBL mediated ligand-induced down regulation of EGF receptors, 
Gamma-aminobutyric Acid Receptor Life Cycle, Role of Tob in T-cell activation,
and Angiotensin-converting enzyme 2 regulates heart function. We permuted the DACE 
result matrix to determine whether the vertical patterns occurred randomly or not.  
We shuffled columns within each row randomly, and reclustered the permuted matrix. 
Comparing clustering of the permuted matrix (Figure 5(b)) with clustering of the raw 
result matrix (Figure 5(a)), we could not identify distinct patterns in the permuted case. 
Furthermore, variation of tree depth of hierarchical clustering was disappeared after 
permutation. 

Figure 4 Genetic similarity of pathways. (a) Hierarchical clustering for identifying genetic 
similarity among pathways. Row-wise clustering was done using the result matrix
of the DACE test. In the matrix, column means SNPs, row means gene sets and each 
cell means association signal (–log10 p) between corresponding row and column.
White arrow points at one of vertical band at chromosome 6 and (b) The vertical bands 
observed in heatmaps represents common associative locus among five pathways.  
That is, the five pathways have joint association with a locus at chromosome 6.  
The pathways are The role of FYVE-finger proteins in vesicle transport, CBL mediated 
ligand-induced down regulation of EGF receptors, Gamma-aminobutyric Acid Receptor 
Life Cycle, Role of Tob in T-cell activation, and Angiotensin-converting enzyme 2 
regulates heart function (see online version for colours) 

(a) (b) 
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Figure 5 Heatmaps using clustering of the raw data matrix and clustering of the permuted data 
matrix. We permuted the values of the 178 pathways (shuffle column within each row) 
and recluster the data matrix to determine whether the original patterns occurred 
randomly or not. (a) Heatmap and dendrogram generated using clustering of raw result 
matrix and (b) Heatmap and dendrogram generated using clustering of permuted matrix 
(see online version for colours) 

4 Discussion and conclusion 

Previous single gene analyses assumed that all genes were individually expressed  
and looked for regulatory factors for each individual gene, an insufficient approach.  
In contrast, we developed a set-wise approach (the DACE test) to reveal the genomic  
loci involved in the regulation of co-expression, or of the inter-correlation of mRNA 
expressions, in gene sets, such as those involved in pathways. The DACE test treats a 
gene set as an analytical unit and examines factors associated with correlated activities 
within a given pathway. This relationship, between a genomic locus and a gene set, 
cannot be detected by single gene tests. Having configured our gene set using biological 
knowledge, rather than through an optimising approach, to generate a random set, our 
results are more biologically relevant. Using biological knowledge of pathways also 
narrows the computational scope of such studies, leading to higher power and better 
efficiency.

It was shown that the SNP regulators identified by the DACE test were not associated 
with the actual expression level of genes. Genotype differentiation of the SNPs did not 
explain the variance of gene expression profiles, as the SNP-gene relationships were not 
identified as significant in single gene tests as a single gene test. Instead, they regulated 
the level of correlations between genes and were only detectable when the set of genes 
was studied as a unit (See Figure 2 for an example using the role of Tob in T-cell 
activation pathway). This clearly demonstrates the utility of our approach for biological 
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discovery, i.e., studying the regulation of interactive activities within pathways, which 
cannot be achieved with traditional genetical genomics approaches. It should also  
be noted that our approach is different from studying gene-gene regulation within a 
pathway, which focuses on the interactive activities of individual gene pairs genes within 
a pathway. 

It is well known that complex functions of living cells are performed through the 
concerted efforts of many genes (Segal et al., 2003). A biological pathway is defined as a 
series of molecular interactions and reactions. If there are subtle changes in the 
expression level of a few genes located in the upper cascade of a pathway, they may alter 
the overall co-expression patterns of the pathway. This hypothesis is plausible when 
explaining our DACE results. We found, for 7 of the 15 significant pathways, at least one 
upper cascade gene that was adjacent to the identified regulatory loci of the pathways.  
In the case of the Cyclin E destruction pathway, the E2F1 gene is high in the upper 
cascade of the pathway (Figure 6) and the gene was located right next to the significant 
regulatory locus of the pathway (Figure 3). 

Figure 6 The Cyclin E destruction pathway (see online version for colours)

In this study, we first demonstrated genetic similarity among gene sets and its  
patterns across genomes. Unlike the previous study, about common regulators for 
multiple genes, we focused on gene sets and they might have common regulators as well 
as individual genes. In the clustering of the DACE result matrix, there were several 
vertical patterns, representing common regulatory loci, across genomes (Figure 4(a)). 
Genes located in flanking regions of the common loci might be hubs of the gene 
regulatory network. Among 15 significant pathways, some regulatory loci were common 
in association patterns of the pathways, but some loci were not. It might suggest that 
pathways are affected not only by a common regulator but also by a unique regulator. 
The true situation is more complicated; however, our results may provide insights for 
elucidating regulatory networks in HSCs. 
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While there have been several studies concerned with co-expression or co-regulation 
of genes under external stimuli, these studies have yet to take into consideration natural 
variations, such as inherited genetic variation. Our procedure, designed to measure the 
influence of genetic variation on the co-regulation of gene expression at a genome-wide 
scale, offers important evidence of the heritability of mRNA co-expression between 
individuals. 
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