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Abstract
Microarray technology makes it possible to measure the 
expressions of tens of thousands of genes simultaneously 
under various experimental conditions. Identifying differentially 
expressed genes in each single experimental condition 
is one of the most common first steps in microarray gene 
expression data analysis. Reasonable choices of thresholds 
for determining differentially expressed genes are used 
for the next-step-analysis with suitable statistical significances. 
We present a supervised model for identifying DEGs 
using pathway information based on the global connectivity 
structure. Pathway information can be regarded as a 
collection of biological knowledge, thus we are trying to 
determine the optimal threshold so that the consequential 
connectivity structure can be the most compatible with 
the existing pathway information. The significant feature 
of our model is that it uses established knowledge as a 
reference to determine the direction of analyzing microarray 
dataset. In the most of previous work, only intrinsic 
information in the miroarray is used for the identifying 
DEGs. We hope that our proposed method could 
contribute to construct biologically meaningful structure 
from microarray datasets.
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gene, graph theory, DNA microarray, gene expression

Introduction
Microarray expression datasets are incessantly accumulated 
with the aid of recent technological advances. It is widely 
believed that biological meaningful interpretation can be 
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extracted from these large-scale data, using suitable and 
well-organized methods of analysis. Identifying differentially 
expressed genes in each single experimental condition 
is common first step for the DNA microarray data analysis. 

Newton et al. (Newton et al., 2001) suggested the 
probability model to estimate the significant changes of 
each probe, considering not only its expression ratio of 
two channels but also its variance and mean intensity of 
two channels. To give significant genes that discriminate 
given groups of experimental conditions, Iyer et al (Iyer 
et al., 1999) and DeRisi et al. (DeRisi et al., 1997) 
discussed methods choosing genes that have big 
fold-changes, with suitable threshold, over their base line 
expressions. Also several probability approaches have 
been proposed to detect differentially expressed genes. 
(Tusher et al., 2001; Hunter et al., 2001; Dudoit et al., 
2002; Efron and Tibshirani, 2002; Zhao and Pan, 2002) 
But all these methods, in practical use, need to select the 
optimal threshold determining differentially expressed 
genes.

On the other hands, recently there are many attempt 
to lead a new insight by combining multiple types of data. 
(Yamanishi et al,. 2004; Kharchenko et al., 2004) 
Yamanishi et al. uses kernel method to predict new 
gene-to-gene interaction within metabolic pathway and 
bases it on known pathway knowledge by adopting 
supervised information acquired from microarray 
expression data. Kharchenko et al. compares established 
metabolic network with expression profiles to find genes 
that can complete a metabolic pathway with some 
participants missed.

In this paper, we present a supervised model for 
identifying differentially expressed genes in each 
condition by taking optimal threshold using pathway 
information based on the global connectivity structure. 
Pathway information can be regarded as a collection of 
biological knowledge, thus we are trying to determine the 
optimal threshold so that the consequential connectivity 
structure can be the most compatible with the existing 
pathway information. Most of previous models that 
shared with our goal used only intrinsic information in the 
miroarray expression data. The significant feature of our 
model is that it uses established knowledge as a 
reference to determine the direction of analyzing 
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Fig. 1. Compatibilities between pathway graph and various graphs from microarray data: (A) is the pathway graph
and (B)-(D) are graphs from microarray data with various thresholds. Triangular tables represent geodesic
distances in graph (A) and subgraph of (B)-(D), respectively.
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microarray dataset. We hope that our proposed method 
could contribute to construct biologically meaningful 
structure from microarray data sets.

Methods
Graph structure as a common template structure
In order to compare structures of two heterogeneous 
types of data, microarray expression data and biological 
pathway data, we introduce the common template 
structure, a graph, which involves the interactive 
information of genes from two sources of data.

We use the Rosetta compendium dataset (Hugh et 
al., 2000), which is hitherto the most systematic approach 
to profile yeast genes, as a source of microarray 
expression data to analysis. The dataset is consisted of 
300 microarray experiment results, which contain 287 
diverse gene mutations and 13 chemical treatments. 
They all cover 6,153 genes in each microarray data. The 
log-expression ratio values are used as entries of 
expression matrix, and these values are normalized so 
that mean and standard deviation of each column are 0 
and 1, respectively.

In each experiment, we are trying to identify 
differentially expressed genes (or DEGs), which are 
usually determined by genes whose expression levels 
(or its suitable statistics) exceed some threshold. We 
here note that once DEGs are determined, the graph 
structure on the whole genes is naturally introduced by 
linking co-differentially expressed genes. Here by 
co-differently expressed genes we mean that they are 
DEGs under the same experimental condition. In this 

paper, we find optimal thresholds in the sense that the 
resulting secondary graph structure is most similar to the 
graph constructed from pathway knowledge.

KEGG (Kyoto Encyclopedia of genes and genomes) 
database (Kanehisa, 1996) is taken as the source of 
pathway knowledge. Note that it provides 88 biological 
pathways including 84 metabolic pathways and 4 
regulatory pathways. Among these 88 pathways, we 
select 43 pathways that include 12 or more genes to 
avoid the perturbation caused by scarcity of basis 
knowledge. KEGG database presents a pathway with 
participating genes and relations between them.

In constructing 43 pathway graphs from the information, 
we make a node for each gene and link a pair of nodes 
when they are assigned one of the relations listed above. 
Merging these 43 pathways graphs, we build the single 
pathway graph of 570 genes as nodes, which will be 
used as a template to determine DEGs.

The global compatibility between two graphs
Here we introduce the notion of compatibility between 
two graphs, in the general context of graph theory. The 
geodesic distance       between two nodes g and h 
is defined by the length of shortest path between two 
nodes in the graph G. This distance represents the 
global structure of graph. (Chatrand et al., 1998) If two 
graphs G1 and G2 are constructed on the same set of 
nodes, then the geodesic distance of two graphs can be 
easily extended by the average of differences of all 
geodesic distances of all pairs of nodes in each graph, 
i.e.
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Fig. 2. Correlation between microarray data and pathway information
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where the summation is taken over all pairs (g, h) of 
nodes and n is the number of common set of nodes. We 
here note that it is symmetric and satisfies triangle 
inequality (Chatrand et al., 1998).

Let GP be the pathway graph obtained from KEGG 
pathway database. And let GM be a graph constructed 
from the Rosetta compendium dataset by linking 
co-differentially expressed genes. The threshold θ is 
used to determine DEGs in each condition, i.e., a gene 
pair (g,h) is linked in the graph GM  if the absolute value of 
normalized log-ratios of expressions in g and h are both 
greater than θ. Then the compatibility Comp(GP, GM) is 
obtained by

              

Here n is the number of genes in GP, and GM|GP is the 
relative subgraph of GM to GP. Since the pathway graph 
GP contains only subset of genes that are described in 
graph GM, it is natural to compare GP and subgraph of 
GM. It is clear that the compatibility lies between 0 and 1 
and it becomes 1 only when the graph GM includes 
exactly same structure of GP.

The effect of the optimization on compatibility is 
illustrated in Fig. 1. In the figure, (B), (C) and (D) are 
possible graphs from microarray dataset by taking 
different threshold determining DEGs. And (A) is the 
pathway graph which will be used as a reference to 
select one graph from (B), (C) and (D). By calculating 
compatibilities, which represents the global similarity of 
graph structures, we can take the threshold used in 
constructing graph (B) as the optimal one.

Results
Correlation of micrarray data and pathway 
knowledge
We try to determine DEGs in each experimental 
condition of microarray expression data based on the 
template structure of pathway knowledge. The underlying 
assumption of our approach is that pathway knowledge 
can be conjectured from microarray data, or that 
microarray data reflect the biological pathway knowledge. 
We investigate the validity of this assumption by 
investigating the correlation between co-degree in 
microarray expression data and relations within pathways.

The co-degree of gene pair (g,h) with parameter θ  is 
defined by the number of conditions satisfying that both g 

and h become DEGs simultaneously under the condition 
with respect to the threshold θ . Based on the pathway 
information, however, we can categorize gene pairs into 
three classes: The first class comprises gene pairs in 
which two genes belong to the pathway and are 
connected by a specific biological relation. The second 
class comprises gene pairs whose genes belong to the 
pathway but are not related by any biological relation. 
The third one is comprises gene pairs whose genes are 
outside the pathway. For these three classes, we 
calculate the average of co-degrees as a correlation of 
microarray data and pathway knowledge.

We naturally expected that the average co-degrees 
on gene pairs in the first class is bigger than that of the 
second class, and that of the third class the smallest 
value. Fig. 2 shows the result which agrees with our 
expectation and so we validate that there is a positive 
correlation between the relational information of pathway 
information and microarray data.

Differentially expressed genes in the Rosetta 
compendium dataset
Applying our model to rosetta compendium dataset, we 
find the optimal threshold determining DEGs in whole 
300 conditions. To do this, we first let GP be the pathway 
graph obtained from KEGG pathway database and GM  

be a graph constructed from the rosetta compendium 
dataset by linking co-differentially expressed genes, 
where differentially expressed genes in each condition 
are determined by a predefined threshold. The compatibility 
plot via various thresholds is provided in Fig. 3. The 
compatibilities in the figure are calculated with two 
graphs GP and GM . The shape of the curve is nearly 
uni-peaked, so there is no doubt about selecting threshold 
in the peak as the optimal one. Actually, we just adapt 
simple greed algorithm to find optimal threshold 1.4926 
under the restriction that the threshold is independent 
from conditions for the simplicity of algorithm.
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Fig. 4. Histogram of the number of DEGs in 300 conditions of 
the rosetta compendium dataseFig. 3. Compatibilities via threshold

Fig. 4 shows the distribution of the number of DEGs in 
300 conditions applying the optimal threshold. Among 
whole 6,153 yeast genes, we see that our model select 
about 10% of genes as DEGs in each condition. This 
result agrees with the common criterion which can be 
found in many biological literatures.

Discussion
In the present paper, we suggest a novel model to 
identify differentially expressed genes in each conditions 
of a microarray dataset. The procedure is one of the first 
steps of analyzing expression profiles. The significant 
feature of our model is that it uses established 
knowledge as a reference to determine the direction of 
analyzing microarray dataset and it does not consider 
the individual structure but consider the global network 
structure to determine DEGs in each single condition. 
And because of using information outside array, it does 
not need any assumptions on the distributions of 
expression profiles. We also investigate the validity of 
our basic assumption that relational information in 
existing pathway knowledge reflects the expression 
level, or moreover network structure of microarray data. 

Knowledge about pathways covers only small portion 
of genes that exist (Chung et al., 2004). In case of yeast, 
less than 10% of the whole genes (i.e. ~6,000) are found 
to participate in some known pathways. And graph 
structure is too simple to use as a template structure to 
compare the pathway and microarray data, because it 
ignore the orders and types of biological relations. These 
incompleteness and simplicity may give insignificant 
results of our model. But applying other biological 
information, such as protein interaction data and 
relational information of genes or proteins from biological 
literature, and modifying graph structure into more 

complicated structure, we can overcome the problem of 
our current model.
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