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Abstract. Emerging patterns (EP) represent a class of interaction struc-
tures and have recently been proposed as a tool for data mining. Espe-
cially, EP have been applied to the production of new types of classifiers
during classification in data mining. Traditional clustering and pattern
mining algorithms are inadequate for handling the analysis of high di-
mensional gene expression data or the analysis of multi-source data based
on the same variables (e.g. genes), and the experimental results are not
easy to understand. In this paper, a simple scheme for using EP to im-
prove the performance of classification procedures in multi-source data
is proposed. Also, patterns that make multi-source data easy to under-
stand are obtained as experimental results. A new method for producing
EP based on observations (e.g. samples in microarray data) in the search
of classification patterns and the use of detected patterns for the classi-
fication of variables in multi-source data are presented.

1 Introduction

Microarray experiments have brought innovative technological development to
the classification of biological types. But more powerful and efficient analytical
strategies need to be developed to carry out complex biological tasks and to
classify data sets with various types of information such as mining disease related
genes and building genetic networks.

The analytical strategy of bio-data can be classified into two categories ac-
cording to the form of learning algorithm. First, as an unsupervised learning
method such as typical clustering algorithms, the analytical method deals di-
rectly with genes while ignoring the biological attributes (labels) when handling
DNA data (instance). Supervised learning is a target-driven process in that a
suitable induction algorithm is employed to identify the genes that contribute the
most toward a specific target, such as the classification of biological types, gene
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mining or data-driven gene networking[8]. Among supervised learning methods,
rule based approach can be said that this partitions the sample and feature gene
space simultaneously and it is especially an efficient method for classification
of multi-source data. In statistics, the analysis of gene expression profiles is re-
lated to the application of particular supervised learning schemes. The structure
of gene expression profiles must be suited for the typical data situation with a
small number of patients n (=observations) and a large number of genes p (=vari-
ables), the so-called ’small n large p’ paradigm in gene expression analysis[2][12].

In this paper, we develop a new rule-based ensemble method using EP for
the classification of multi-source data. EP are those whose support changes sig-
nificantly from one data set to another[19]. EP are among the simplest examples
used to understand interaction structures, and are not only highly discriminative
in classification problems[19], but can also capture the biologically significant in-
formation from the data. However, a very large volume of EP is generated for
high dimensional gene expression data[7]. In this paper, we apply concise EP
for multi-source data classification based on observations from each individual
data set. When dealing with classification methods, microarray data is generally
used, but only a few number of approaches are designed to consider explicitly the
interaction among the genes being investigated. Interaction is well understood
as (co-)expression genes in a cell governing a complicated network of regulatory
controls. Hence, the interdependencies of all genes must be taken into consider-
ation in order to achieve optimal classification. We propose a new method that
can handle all variables in an appropriate way. It must be noted that the goal
of the analyses presented in this paper is not to present correlated interaction
genes for multi-source data but rather to illustrate our proposed classification
method using EP.

The remainder of this paper is organized as follows. The application of multi-
source data and classification methods in bioinformatics, and the analysis of EP
are reviewed in section 2. A method for extracting EP from multi-source data
sets and their applications are explained in section 3. Furthermore, significant
experimental results by applying the proposed method and its details are de-
scribed in section 4. Finally, concluding remarks and future works are presented
in section 5.

2 Related Works and Background

In section 2, multi-source data, classification algorithm applications in bioinfor-
matics and EP for multi-source data classification are reviewed as related works
and background.

2.1 Multi-source Data

Bioinformatics not only deals with raw DNA sequences, but also with other var-
ious types of data, such as protein sequences, macromolecular structure data,
genomes data and gene expression data[19]. The various types of data provide
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researchers with the opportunity to predict phenoma that were formerly con-
sidered unpredictable, and most of these data can be accessed freely on the
internet.

We assume that the analysis of combined biological data sets leads to more
understandable direction than experimental results derived from a single data
set. The purpose for combining and analyzing different types of data is to identify
with more accuracy and to provide more correlations using diverse independent
attributes in gene classification, clustering and regulatory networks and so on.
Among the features of bio-data, one is that the same variables can be used to
make various types of multi-source data through a variety of different experi-
ments and under several different experimental conditions. These multi-source
data are useful in understanding cellular function at the molecular level and
also provide further insight into their biological relatedness by use of informa-
tion from disparate types of genomic data. In [14], the problem of inferring gene
functional classification from a heterogeneous data set consisting of DNA mi-
croarray expression measurements and phylogenetic profiles from whole-genome
sequence comparisons is considered. As a result, it is proposed that more impor-
tant information can be extracted by using disparate types of data.

2.2 Classification Problem in Bioinformatics

Classification problems aim at building an efficient and effective model for pre-
dicting class membership of data. Initial analysis of multi-source data focused
on clustering algorithms, such as hierarchical clustering[9] and self-organizing
maps[16]. In these unsupervised learning algorithms, genes that share simi-
lar expression patterns form clusters of genes that may show similarities in
function[14]. But, because clustering methods ignore biological attributes (la-
bels), they have limitations in the search of attributes or the discovery of rules
in observations.

In [10], supervised learning techniques were applied to microarray expression
data from yeast genes. It was verified through this application that an algorithm
known as support vector machine (SVM)[3][4][13] provides excellent improve-
ment in classification performance compared to a number of other methods,
including Parzen windows and Fisher’s linear discriminant[10]. Also, the meth-
ods used in [10] have been successfully applied to disease genes classification
with machine learning approaches such as support vector machines (SVM), arti-
ficial neural network(ANN), k-nearest neighbors (kNN), and self-organizing map
(SOM). In recent studies on the application of classification methods, supervised
learning methods are aiming at showing the existence or nonexistence of disease
by searching for disease genes[19].

2.3 Analysis of Emerging Patterns

A wide variety of gene patterns can be found for each data set. In [2] and [19],
gene expression profiles were used to individually apply CART algorithm, a
supervised learning method, and clustering method, an unsupervised learning
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Fig. 1. Flowchart of the experimental method

method, to detect all types of early cancer development. To improve accuracy in
classification, EP were applied to express the interaction between cancer-causing
genes. Pattern association and clustering are both data mining techniques that
are frequently applied in the fields of cancer diagnosis and correlation studies of
gene expression[20]. But the results from these methods do not meet our require-
ments because multi-source data was not considered. EP were first introduced
in [5], and they were defined as the item set that significantly increases support
in each data sets D1 and D2 using the appropriate cut-off value of the growth
rate. Unlike frequent patterns in common association analysis, EP are applied to
classification problems to provide high discrimination, and are proved to be more
useful. Also, EP are easy to understand because they are the collections of at-
tributes in a dataset, and this property is especially important in bioinformatics
application problems.

Thus, this paper proposes an efficient classification method using EP that
is efficient when using analysis based on the smaller number of observational
attributes rather than the very large number of variable attributes.

3 Methods

In this section, the experimental data and experimental methods applied in this
paper are explained in detail. The overall framework is illustrated in Figure 1
and it will be explained in order.

3.1 Data

In this paper, two types of genomic data were used as multi-source data for
the application of the proposed method. The first data set was derived from a
collection of DNA microarray hybridization experiments. Each data point in the
microarray data represents the logarithm of the ratio of expression levels of a par-
ticular gene under two different experimental conditions. The data consists of a
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Fig. 2. Data structure of microarray data

Fig. 3. Data structure of phylogenetic profile

set of 79-element gene expression vectors across time points for 2,465 yeast genes.
These genes were selected by [9] based on accurate functional annotations. The
data were collected at various time points during the diauxic shift[6], the mitotic
cell division cycle[15], sporulation[17], and temperature and reducing shocks, and
are available on the stanford website (http://www-genome.stanford.edu)[14].

In addition to the microarray expression data, we applied data characterized
by 24 phylogenetic profiles[11] to each of the 2,465 yeast genes. In this data
set, a phylogenetic profile is a bit string, in which the boolean value of each bit
reflects whether the gene of interest has a close homolog in the corresponding
genome. The profiles employed in this paper contain, at each position, the neg-
ative logarithm of the lowest E-value reported by BLAST version 2.0[18] in a
search against a complete genome, with negative values truncated to 0. The pro-
files were constructed using 24 complete genomes, collected from the Institute
for Genomic Research website (http://www.tigr.org/tdb) and from the Sanger
Centre website (http://www.sanger.au.uk). Prior to learning, the gene expres-
sion and phylogenetic profile vectors were adjusted to have a mean of 0 and a
variance of 1. The description of each data set, composed of the microarray data
and phylogenetic profile data about the 2,465 yeast genes, are as shown in figure
2 and figure 3.

In the experiments of this paper, the betweenness centrality values based on
10 samples (=observations) that have 79-element time points values in the first
microarray data set were as shown in figure 2. Thus, gene clusters were formed
by extracting the most closely related genes in the order of high betweenness
centrality value first.

As a result, a total of 10 clusters were formed (all genes were included in
at least one sample in this experiment). And also for the second phylogenetic
profile data set, 25 clusters (one additional cluster was formed with the genes
that were not included in any of the 24 species) were formed by extracting the
most closely related genes in order of high betweenness centrality value first.

3.2 Application of Betweenness Centrality Based on Observation

Bio-data is characterized by having a small number of observations compared
to the number of variables. This characteristic found in bio-data can also be



970 H.-S. Yoon, S.-H. Lee, and J.H. Kim

observed in microarray data, and this is well reflected in the data where the
number of columns corresponding to observations are outnumbered by the num-
ber of rows corresponding to variables (=genes). The exclusion of some variables
can lead to significant differences in experimental results because a characteristic
of bio-data is that interaction among the data is highly dependent. Therefore,
in this paper, the characteristic EP are represented by considering all variables
in each data set and the results are applied for the classification of multi-source
data. Also, since EP are easy to understand and represent, they are useful for
judging the features other types of data.

The following explains in order the proposed method of forming EP with a
single data set.

1. First, based on the observations, clusters are formed with genes that con-
tribute the most toward these observations, since bio-data sets have a smaller
number of observations than variables. Then, the betweenness centrality
method used in social network analysis to extract the variables that are
closely related to the observations is applied. Social network analysis is a
theory in Sociology, and it is the mapping and measuring of relationships
and flows between people, groups, organizations, animals, computers or other
information/knowledge processing entities. The nodes in the network repre-
sent people and groups, and this means that the most active people have the
most relationships (=links) with many other people[14]. That is, the entire
network is closely related to this node.
In this experiment, the betweenness centrality value of each observation was
computed, then the observation with the highest value was found and genes
that were the most closely related were extracted.

2. From the previous experiment, the observation with the highest between-
ness centrality value and the genes that were the most closely related to
the observation were set aside, and the betweenness centrality value for the
remaining observations and genes are computed again. From the resulting
values, the observation with the highest betweenness centrality value and
the genes that were the most closely related to the observation are clustered.

3. In the same manner, the betweenness centrality value is computed repeat-
edly as many times as the number of observations, in order to form clusters
according to the relations between observations and variables.

4. And finally, one cluster is formed with variables that are not included in any
other observation.

The methods mentioned above are shown in figure 4, when applied to a
phylogenetic profile data set. In the case of phylogenetic profiles data, 24 species
(=observations) and 2,465 genes (=variables) are formed, and the method is
repeated to extract the genes that are the most closely related in the order of
the observation with the highest betweenness centrality value. And finally, one
cluster is formed with genes that are not included in any other species.
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Fig. 4. Application method of betweenness centrality based on observation

3.3 Forming Emerging Patterns Between Individual Datasets

As shown in figure 4, the betweenness centrality value of each observation is
computed for the experimental data in section 3.1. Then clusters are formed
by extracting variables (=genes) that could explain the observations with the
highest betweenness centrality value. As a result, the microarray data of yeast
applied to the first experiment are clustered by reducing 79-elements time points
to 10 observations (the clusters were formed from 10 samples composed of 79-
elements time points, while the experiment handles observations according to
sample number and not time point. See figure 2). In the second phylogenetic
profiles experimental data, the 24 species corresponding to the columns are re-
garded as observations, and clusters are formed in as many number as observa-
tions. In this paper, EP formed in microarray data sets and phylogenetic profile
data are represented in the following way. EP in microarray data sets and phy-
logenetic profiles are expressed in the form of exp(X1) > a1

∧
exp(X2) < a2 and

phylo(Y1) > b1
∧

phylo(Y2) > b2, respectively. In each representation of EP, Xi

is the measured expression level of observations in microarray data sets and Yj

is the sequence similarity of observations in phylogenetic profiles data. The ai

and bj in the representations are boundary constants that can be inferred from
each data set, and they represent the threshold value of the expression level in
microarray data and the sequence similarity in phylogenetic profiles data.

4 Experimental Results

In this paper, R package was used to compute betweenness centrality and Weka
algorithm was applied to make classification rules. The results are shown in
figure 5, where 10 rules are made for the microarray data set and 24 rules are
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made for the phylogenetic profiles. We can confirm that 6 out of 10 samples are
applied in making EP of the microarray data and all 24 observations are applied
to the classification rules for making EP of the phylogenetic profiles data.

Fig. 5. Emerging patterns of microarray data and phylogenetic profiles

The results in figure 5 can be interpreted as follows: The EP in the 7th line
are in the form exp(dtt) ≥ 1.12

∧
exp(cold) ≤ 0.585, and this means that the

variables with dtt gene expression levels greater than 1.12 and cold values less
than 0.585 for ′dtt′ observation in the entire microarray data set can classify
the ′dtt′ observations in the entire microarray data set. Also, these EP can be
considered as classifiers that can be classified among other observations in the
microarray data set. The alpha in the last line of the EP of the microarray data
shows that the genes that can explain the ′alpha′ observation are those that do
not correspond to any of the above rules. The results of the phylogenetic profile
can be interpreted in the same way, where the EP of the first line is in the form
of phylo(cpneu) > 1.1

∧
phylo(tpal) ≤ 1.09, and this becomes the classifier that

can classify the ′cpneu′ observation in the phylogenetic profile data set.
Validation results of the EP, as to how accurately they can classify the two

types of data sets, show that accuracy is 86.76% and 97.79% for microarray data
and phylogenetic profile data, respectively. The relatively low accuracy for the
microarray data set could be explained by the reduction of 79 time points to 10
observations before the start of the experiment.
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5 Conclusions and Future Works

Typical bio-data analysis methods deal directly with genes while ignoring bio-
logical attributes, but since the interaction among genes plays an important role
in bio-data analysis, new methods must be developed. Also, multi-source data
classification and analysis problems are much more complex and have more fac-
tors to be considered than single-source data problems. When handling bio-data,
disparate types of multi-source data can be made based on the same variables,
and we are in need of classifiers that can classify the data sets and methods to
easily understand the features of the data sets. Therefore, this paper proposes
a new method that considers the characteristics of bio-data, and while existing
methods ignore biological attributes and analyze only the genes, the proposed
method provides an analysis method based on observations using all variables
from each data set. This method makes EP that take into account the relations
between genes in the data set and the results are applied to the multi-source
data classification. An existing paper introduced a method to map variables to
gene function categories by applying the SVM method using the same data set
in this paper[14]. But the method introduced in the existing paper differs from
the proposed method, which considers both observations and variables, in that
the existing method has no regard of the interaction structure between genes in
the analysis stage, that it is not easy to interpret and that the analysis is done
after variables are removed first by some threshold value in the preprocessing
stage.

The experimental methods introduced in this paper suggest several avenues
that can be taken for future research. One direction would be to find a better
classifier of multi-source data in bio-data. Another direction would be, since only
two biological data types were used for multi-source data classification, to include
multiple biological data types for discovering EP and for extending the proposed
method in multi-source data classification. Also, another important task would
be to come up with a theoretically and experimentally justified verification of
disparate data.
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