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Abstract- Cluster analysis is the most important method
for analyzing large-scale gene expression patterns. The
matrix representation of microarray data and its suc-
cessive ‘optimal’ incisional hyperplanes that create top-
down hierarchical tree are a useful platform for devel-
oping optimization algorithms to determine the ‘optimal’
clusters from a pairwise proximity matrix which repre-
sents completely connected and weighted graph [1]. Evo-
lution strategy is applied to determine the ‘globally op-
timal’ incisional hyperplanes to construct hierarchical
tree structure and tested with Fisher’s iris and Golub’s
leukemia data sets. The results were compared with
those of bottom-up hierarchical clustering, K-means and
SOMs(Self-Organizing Maps) algorithms with promising
results.

1 Introduction

The unprecedented high-throughput of DNA sequence in-
formation by various sequencing projects such as Human
Genome Project requires new paradigm for biomedical re-
search. Even though deciphering human genome has been
finished, we still do not know what the human genome tells
us. Functional genomics aims to reveal cooperative roles of
genes at a genome-wide scale as well as the biological func-
tions of each gene. This will lead to understanding the mech-
anism of cell development, causes of diseases, and effects of
drug target, etc.

The DNA microarray is a powerful experimental tool
for extracting functional information from genome [2,
3]. On glass surface, cDNA (complementary DNA) or
oligonuleotide fragments for hybridization are regularly ar-
rayed in high density. The genes, the protein-encoding DNA
regions of genome, play biological roles when they are trans-
lated into protein via mRNA transcription, which is called
gene expression. The DNA microarrays enable large-scale
measurement of expressed mRNA from living cells, thereby
we can investigate gene expression patterns which are very
important clues for understanding biological functions of the
corresponding genes. Especially, the oligonucleotide mi-
croarrays can be used to detect sequence polymorphisms or
mutations in genomic DNA. They are very promising to be
applied for diagnosis of disease in a molecular level.

The schematic procedures for monitoring gene expression
using DNA microarrays are illustrated in Figure 1. After
mRNA is extracted from tissues of two different conditions

(e.g. normal and cancer cells), it is reversely transcribed
to DNA, called cDNA. The cDNA’s from two different tis-
sues are labeled with fluorescent dyes of different colors (red
and green) and bound by the base paring (A-T, G-C) to the
spot of the microarray, made of the complementary sequence
cDNA, that is called hybridization. After unbounded cDNA
is washed off, the microarray is scanned by green and red
lasers. We can compare the quantity of the each gene ex-
pression in the two conditions after some image processing.
We can mine functional information of each gene by analyz-
ing the large-scale gene expression profiles obtained by the
microarray experiments in various kinds of situations such as
drug treatments, cancer types, stages of cell development, etc.

Cluster analysis is the most important method for analyz-
ing DNA microarray data. It extracts internal structure from
observed data by dividing them into meaningful groups. It
is the starting point to explore the internal structure of gene
expression data in DNA microarrays. Because the genes
of similar expression profiles may share similar functions,
clustering gene expression data inSaccharomyces cerevisiae
grouped the genes of known similar functions and have also
shown to be used for tentative assignment of functional an-
notation of unknown genes based on known genes [4]. Clus-
ter analysis is also useful in classifying tissues on the basis
of gene expression. The cancerous and normal tissues are
distinguished even with genes of subtle differences in gene
expression [5]. Golubet al. proposed a class discovery pro-
cedure using cluster analysis [6]. The procedure categorizes
leukemia into acute myeloid leukemia (AML) and acute lym-
phoblastic leukemia (ALL) without prior knowledge. They
also developed leukemia class predictor by supervised learn-
ing method based on gene expression data. In addition, co-
regulated genes can be identified by cluster analysis, since
there is the correlation between sequence motifs in promoter
region and gene expression profile [7, 8]. Holmeset al. con-
sidered gene expression data and promoter sequences simul-
taneously to find co-regulated genes by cluster analysis [9].

In Sec. 2, we will briefly review the widely used clus-
tering algorithms in analysis of DNA microarray data, such
as bottom-up hierarchical clustering, K-means, and self-
organizing maps (SOMs). In Sec. 3, global optimization ap-
proach for cluster analysis using evolution strategy will be
described. In Sec. 4, we will demonstrate the performance
of the algorithm with Fisher’s iris and Golub’s leukemia data
sets by comparing with the results of other clustering algo-
rithms. This paper will be concluded in Sec. 5.
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Figure 1: Schematic procedure of DNA microarray experi-
ments

2 A Brief Review of Cluster Algorithms

In this section, we will give a brief review of widely-used
cluster algorithms: Bottom-up hierarchical clustering, K-
means, and SOMs. The bottom-up hierarchical clustering
algorithm is the first algorithm applied to analyze the gene
expression data in DNA microarrays [4]. The goal of the
algorithm is to build phylogenetic tree(dendrogram) which
graphically represents hierarchy of nested clusters. The al-
gorithmic procedure is as follows:

(1) Compute the dissimilarity(distance) matrix, if neces-
sary,

(2) Find the closest pair of elements or clusters and merge
them,

(3) Update the dissimilarities between combined cluster
and the others,

(4) Repeat steps (2) and (3) until only one cluster remains.

Input parameter of this algorithm is the scheme to modify
the dissimilarity matrix in step (3). Single-linkage, complete-
linkage and average-linkage methods are common variants
of this scheme. In a single/complete/average link version,
the dissimilarity of two clusters is defined by the mini-
mum/maximum/average of dissimilarities between any pairs
of elements in different clusters. Even though it is quite ef-
ficient, this algorithm is not robust, and the global feature of
cluster structure is not considered but clusters agglomerate
with local relation between clusters

The K-means cluster algorithm is very simple. The goal of
the algorithm is to divided data set intok clusters to minimize
the error function defined to be sum of distances between cen-
troids and their associated elements [10]. The number of clus-
ter, k, is given or known. The algorithmic procedure is as
follows:

(1) Choosek elements as initial centroids,

(2) Assign all elements to the nearest centroid,

(3) Update the centroid of each cluster,

(4) Repeat steps (2) and (3) until the centroids are fixed or
pre-assigned number of iteration is reached.

The key issues of this algorithm are how to select initial cen-
troids in step (1) and how to update the centroid in step (3).
Random selection is simple but it often produces poor results.
So, other techniques are required to improve this algorithm.
Usually, the new centroid is taken as a mean vector of ele-
ments in the cluster. But, if we take another reasonable error
function, then we should take the median of the elements. It
has difficulties in analyzing the data whose clusters are over-
lapped and outliers exist. In addition, it is restricted to the
data in Euclidean space.

The SOMs uses a type of unsupervised learning based on
neural network [11]. The goal of the algorithm is to give
topology-preserving map from high-dimensional input data
into a feature map of a low-dimensional (usually 1 or 2 di-
mensional) output. The algorithmic procedure is as follows:

(1) Initialize the weight matrix and parameters,

(2) For each input element, determine the “winning” out-
put node with minimum distance and update weights to
winning node and its neighbors,

(3) Repeat step 2 until the weight matrix converges or pre-
assigned number of iteration is reached.

The input parameters of this algorithm are the size of output
nodes, the initialization algorithm of weight matrix and the
strategy of updating the matrix. It is known to be very fast and
effective for visualizing the results, while the disadvantages
are that the output topology is predefined and results depend
on initialization and learning rate.

3 Evolution Strategy Applied to Cluster Analy-
sis

3.1 Data Representation

The DNA microarray data for clustering can be represented
by the completely connected weighted-graph with similarity
measure. The vertex of the graph corresponds to each object
to be clustered. The edge represents the similarity between
objects. The similarity measures can be stored in pairwise
proximity matrix. This representation makes the algorithm
independent of similarity measures, differing from K-means
and SOMs.

3.2 Clustering as an Optimization Problem

Our clustering scheme is successive binary partitioning,
which produces top-down hierarchical tree. Binary parti-
tioning can be done by the incisional hyperplane which de-
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compose the graph into two parts with optimized figure of
merit (clustering index) as illustrated in Figure 2. Kimet
al. proposed some figure of merit called MII (Matrix Inci-
sion Index), which includes homogeneity and separation of
binary partition [1]. Homogeneity indicates that each object
within the same cluster should have high similarity. Separa-
tion means that the objects between clusters should have low
similarity. These requirements are incorporated into MII as
follows:

MII =
(m/(n + m)) ∗ b + (n/(n + m)) ∗ c

a
(1)

wherem andn are sizes of groups 1 and 2, respectively,a is
the average link strength between groups 1 and 2,b andc are
within-group average link strength of group 1 and 2, respec-
tively. The numerator corresponds to homogeneity, the de-
nominator to separation. Since homogeneity/separtion should
be as high/low as possible in binary partitioning, we should
maximize the MII. The index is defined directly from the sim-
ilarity matrix without prior information regarding the struc-
ture of data set.

Figure 2: The incisional hyperplane decomposes completely
connected graph into two sub graphs

After we define the MII as a good clustering index, we
should find how to get to global maximum of the MII. Be-
cause there is no general and rigorous mathematical way for
the global optimization problem, a feasible way is to use
heuristic methods to adopt randomness to escape local op-
tima, one of which is evolution strategy used in this paper.

The advantages of global optimization of clustering is to
increase clustering quality because the clustering index is di-
rectly optimized differing from other algorithms. In addition,
we do not have any prior assumption about data structure.
The possible disadvantage is that this algorithm might be rel-
atively slower than other greedy algorithms such as K-means
and SOMs.

3.3 Evolution Strategy to Find Globally Optimized Clus-
ters

Although global maximization of MII gives the best binary
partition in some sense, the order of computation for find-

ing global maximum grows exponentially to the size of data
set. So, we need a heuristic algorithm to find the global maxi-
mum. Evolution strategy (ES) is an effective search algorithm
in optimization problems which simulates the biological evo-
lution. We applied ES to optimize the MII as follows:

First, consider the sequence{xi} with 0 ≤ xi ≤ 1 which
represents the membership rate of data set. If the membership
ratexi is close to zero/one, theith object has great possibil-
ity to belong to the first/second cluster. By the membership
sequence{xi}, the MII (Eq. 1) can be written down with the
following equations.

m =
∑

i

(1− xi) and n =
∑

i

xi (2)

a =
∑

i 6=j

Lij(1− xi)xj (3)

b =
∑

i<j

Lij(1− xi)(1− xj) (4)

c =
∑

i<j

Lijxixj (5)

whereLij is the similarity of objects indexed byi andj.
Once we define MII as the function of the membership se-

quence, we applied standard evolution strategy to find glob-
ally optimized binary partitioning represented by member-
ship sequence{xi}. We used (15,100)-ES, which means that
the numbers of parents and offsprings are 15 and 100, and
the parents in the next generation are selected out of the off-
springs in the current generation. The types of recombination
and mutation in this optimization are local intermediary re-
combination and Cauchy mutation. The local intermediary
recombination works by selecting two parents and calculat-
ing a weighted sum of the components of the two parents.
The Cauchy mutation has been shown to performs better than
Gaussian mutation because of higher probability of making
longer jumps [12]. The individual mutation rates with local
intermediary recombination are used in this computation.

4 Results

In this section, we will show the clustering results of two
public data sets, Fisher’s iris [13] and Golub’s leukemia
gene expression data sets [6] by analyzing the algorithm
presented in this paper. In order to assess the perfor-
mance of the clustering, the results will also be compared
with those of publicly available softwares. We have used
CLUSTER written by Stanford University, in which bottom-
up hierarchical clustering, K-means algorithm, and SOMs
have been implemented (http://rana.stanford.edu/software/).
GENECLUSTER written by Whitehead Institute of Biomed-
ical Research [14] was also used for SOMs (http://www-
genome.wi.mit.edu/MPR/software.html). In order to com-
pare the reproducibility of each algorithm, we carried out
each algorithm ten times and evaluate the standard deviation
of clustering errors.
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4.1 Fisher’s Iris Data

The Fisher’s iris flower data set has been widely used for
evaluation of cluster algorithms. The iris data set consists
of four measurements (petal and sepal length and petal and
sepal width) of 50Iris Setosa, 50 Iris Versicolor, and 50Iris
Virginica. In the test, the similarity measures between the
iris flowers are the absolute values of the Pearson’s correla-
tion coefficient which will be used for all tests of our ES and
bottom-up hierarchical clustering. As illustrated in Figure 3,
the first binary partitioning separated allSetosafrom the en-
tire data set without any error. The next partitioning of 50
Versicolor’s and 50Virginica’s generated six errors. Three
Versicolor’s (objects 9, 12, 40) were clustered toVirginica
and threeVirginica’s (objects 66, 77, 81) toVersicolor. The
overall accuracy of clustering was 96% (144/150). The re-
peated results of our algorithm were the same.

Iris setosa

Iris vesicolor
Iris virginica

: 101-150
: 51-100

: 1-50

50 : 0 47 : 3 47 : 3

setosa vesicolor virginica

9, 12, 40 66, 77, 81

Figure 3: Clustering result of Fisher’s iris flowers by ES ap-
proach. The lists of numbers in the terminal leaves are those
of misclassified objects

The bottom-up hierarchical clustering in CLUSTER with
the same iris data have generated wide range of errors, de-
pending upon the type of clustering, complete, average, and
single linkage clustering. In the three types of clustering, all
Setosa’s were separated without errors. However, in cluster-
ing VersicolorandVirginica, 22 errors (92% accuracy) were
generated in complete linkage clustering, 8 errors (94.7%
accuracy) in average linkage clustering. The single linkage
clustering did not separate the two iris species in the second
highest branch. The repeated results of each type were the
same, respectively.

The K-means algorithm implemented in CLUSTER has
shown clustering performance with iris data as good as our
clustering algorithm. We used two strategies of clustering,
one of which is to make three partition of the data set. The
other is successive binary partitioning, the top-down hierar-
chical method as used in our algorithm. In tri-partitioning,
the mean number of errors was 5.8 (96.1% accuracy), and the
standard deviation was 0.9. Most of errors existed in group of
VersicolorandVirginica while Setosawas separated with 0 or
1 error. In successive binary partitioning, the mean number of

errors was 5.4 (96.4% accuracy), and the standard deviation
was 2.2. We had no errors in separatingSetosa.

We tested two SOMs implemented in CLUSTER and
GENECLUSTER with two strategies as used in testing K-
means. By SOMs in CLUSTER, tri-partitioning method
gaves rise to 5 errors (95.3% accuracy) in all repeated cluster-
ing. Even though successive binary partitioning sometimes
led to only 2 errors (98.7% accuracy) at best, in most of
the repeated results there was no partitioning betweenVer-
sicolor and Virginica by 1×2 SOM. The SOMs in GEN-
CLUSTER produced lower performance with Iris data. In
tri-partitioning, the mean number of errors was 16.3 (89.1%
accuracy), and the standard deviation was 0.5. In binary suc-
cessive partitioning, we had 19 errors (87.3% accuracy) with
the same repeated results.

4.2 Golub’s Leukemia Data

We analyzed Golub’s leukemia data set from 38 human acute
leukemia cells, which was used for training class predictor
of acute myeloid leukemia (AML) and acute lymphoblas-
tic leukemia (ALL) [6]. The ALL group consists of T-cell
ALL’s (T-ALL) and B-cell ALL’s (B-ALL). In the experi-
ment, RNA extracted from each leukemia sample was hy-
bridized to high density microarrays containing 6,817 human
genes. After scanning the microarrays and image process-
ing, the expression levels of each gene for each leukemia
cell were measured. It has been shown that leukemia class
prediciton was feasible by this gene expression monitoring
without additional biological knowledge. Golubet al. se-
lected 50 genes highly correlated with ALL-AML class dis-
tinction. The Figure 4 demonstrates the results of our clus-
ter algorithm applied to leukemia data using the 50 genes.
The first binary partitioning distinguished ALL from AML
with 1 error, and the second distinction of ALL between T-
ALL and B-ALL gave rise to 1 error. Two B-ALL samples
were misclassified into AML and T-ALL, respectively. The
overall accuracy of the result was 94.7% (36/38). The re-
peated results of our algorithm were the same. Even if the 50
genes had been selected for only AML-ALL classification,
the B-ALL and T-ALL samples were successfully separated
because even minute differences in gene expression levels can
be used in cluster analysis as indicated by Alonet al. [5].

The bottom-up hierarchical clustering with complete link-
age produced 3 errors (92.1% accuracy) where 2 errors were
in AML-ALL distinction and 1 error in partitioning T-ALL
and B-ALL. On the other hand, average and single linkage
clustering did not distinguish T-ALL from B-ALL at the sec-
ond highest tree branch, even if they succeeded in ALL-AML
distinction with 1 or 2 errors. The repeated results of each
type were the same, respectively.

In tri-partitioning by K-means in CLUSTER, the mean
number of errors was 7.7 (79.7% accuracy), and the standard
deviation was 4.9. But, the successive binary partitioning
scheme increased the clustering performance with 3.6 aver-
age errors (90.5% accuracy) and 0.5 standard deviation.
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12 : 1 17 : 0 9 : 1

12 17

AML : 28 - 38

B-ALL : 1, 4, 5, 7, 8, 12, 13, 
               15-22, 24-27

T-ALL : 2, 3, 6, 9-11, 14, 23

AML T-ALLB-ALL

Figure 4: Clustering result of Golub’s leukemia data by ES
approach. The lists of numbers in the terminal leaves are
those of misclassified objects

The SOMs of CLUSTER and GENECLUSTER gave dif-
ferent results as in iris data. By SOMs in CLUSTER, we had
10 errors (73.7% accuracy) with the same repeated results in
tri-partitioning, and 2 errors (94.7% accuracy) at best in suc-
cessive binary partitioning while the distinction between T-
ALL and B-ALL had not been achieved three times in binary
partitioning. The SOMs of GENECLUSTER in both clus-
tering schemes did not distinguish T-ALL from B-ALL quite
well while AML-ALL distinction was obtained with 1 or 2
errors. The mean number of overall errors was 11.8 (68.9%
accuracy) and the standard deviation 1.6 in tri-partitioning.
In successive binary partitioning, we had 11.7 average errors
(69.2% accuracy) and 3.0 standard deviation .

As summarized in Table 1, clustering accuracy of our ES
clustering with iris and leukemia data sets is acceptable in
comparison with other algorithms. In addition, the repeated
results of our algorithm were persistent while K-means and
SOMs produce variable results, and SOMs sometimes did
not partition iris and leukemia data. However, the weakness
of this approach is that it requires much more computational
cost than other algorithms. Especially, the objects which do
not inherently belong to evident groups make convergence
much slower. The sophisticated handling of these objects
may speed up the algorithm.

5 Conclusion

Due to the recent development of high-throughput experi-
mental techniques in functional genomics, we are facing the
flood of large-scale gene expression data where various func-
tional information of biological entities is inherent. The needs
in analysis of such biological data sheds light on the impor-
tance of cluster analysis that is basic methodology to reveal
internal structure of complex data set. Because cluster anal-
ysis is the first phase of mining useful information, the reli-
ability of clustering results is responsible for the quality of
information extracted in the following stages.

The direct maximization of the figure of merit (cluster-

ing index) which is main difference with conventional cluster
algorithms can be good strategy to increase clustering qual-
ity. We have shown that evolution strategy was effectively
applied to find globally optimal clusters. In addition, our ap-
proach does not needs any prior assumption about data struc-
ture and considers global perspective of data in clustering. We
can also apply this algorithm with different clustering indices
and similarity measures, which is not possible in algorithm-
dependent methods such as K-means and SOMs.

Even though the computational cost is quite high in this
preliminary study with iris and leukemia data sets, we have
shown that our approach is promising for the further inves-
tigation with a variety of data sets, similarity measures and
optimization algorithms.

Evolution Strategy  Clustering

Bottom-up
Hierarachical
Clustering single linkage

complete linkage

average linkage

K-means
tri-partitioning

succesive binary partitioning

SOMs

CLUSTER

GENECLUSTER

tri-partitioning

succesive binary
partitioning

tri-partitioning

succesive binary
partitioning

Errors

Iris Leukemia

6+0

22+0

8+0

5.8+0.9

5.4+2.2

5+0

2 or N.P.

16.3+0.5

19+0

2+0

3+0

7.7+4.9

3.6+0.5

10+0

2 or N.P.

11.8+1.6

11.7+3.0

Clustering Algorithms

N.P.

N.P.

N.P.

N.P. : No Partition

Table 1: Summary of clustering results

(µ+σ)

µ : σ : mean standard deviation
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