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Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic and postgenomic

data means that many of the challenges in biomedical research are now challenges in computational science.

Clinical informatics has long developed methodologies to improve biomedical research and clinical care by

integrating experimental and clinical information systems. The informatics revolution in both bioinformatics and

clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics, and

prognostics. Postgenome informatics, powered by high-throughput technologies and genomic-scale databases, is

likely to transform our biomedical understanding forever, in much the same way that biochemistry did a generation

ago. This paper describes how these technologies will impact biomedical research and clinical care, emphasizing

recent advances in biochip-based functional genomics and proteomics. Basic data preprocessing with normaliza-

tion and filtering, primary pattern analysis, and machine-learning algorithms are discussed. Use of integrative

biochip informatics technologies, including multivariate data projection, gene-metabolic pathway mapping, auto-

mated biomolecular annotation, text mining of factual and literature databases, and the integrated management

of biomolecular databases, are also discussed. Genet Med 2002:4(6, Supplement):62S–65S.
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Clinical informatics and bioinformatics

The decade of the 1940s brought the first electronic digital
computers, as well as the first antibiotic, penicillin. Motivated
by these revolutionary innovations, by the late 1950s a few
biomedical researchers had started to explore the possible util-
ity of digital computers. By the 1960s, there was extensive use
of computers in the medical sciences, which are fundamentally
information-intensive. The English term medical informatics
(a translation from the Russian informatika) first appeared in
1974 because of the need for a name for this area of new bio-
medical knowledge and because of the lack of a single English
term that includes both information (what is processed) and
computers (how it is processed). The name also needed to en-
compass the fields of science, engineering, and technology.1

Bioinformatics, a newly named and rapidly emerging field
of biomedical research, has been recognized for about a de-
cade. The emergence of modern bioinformatics obtained
enormous insight from carefully constructed clinical genetics
databases, such as disease-specific mutation databases and ge-
notype-phenotype analyses. A flood of large-scale genomic
and postgenomic data, powered by high-throughput technol-
ogies and large-scale databases, means that many of the chal-
lenges in biomedical research are now challenges in computa-

tional science. Not only are many of the fundamental problems
in genomics/proteomics, such as string sequence homology,
pattern recognition, structure prediction, and network analy-
sis, the problems of computational science, but so also are the
structural, behavioral, and developmental features of living or-
ganisms fundamentally informatical phenomena.

Biomedical informatics, the convergence of bioinformatics
and clinical informatics, is radically transforming our biomed-
ical understanding much the same way that biochemistry did a
generation ago. Some academic institutions have already inte-
grated bioinformatics and clinical informatics programs that
have shared areas of research,2,3 core methodologies, chal-
lenges, goals, and impact.4 – 6 As bioinformatics moves from
constructing raw biomolecular data into their biological func-
tions and clinical importance, quality clinical information will
become the critical part of further progress. A patient’s biomo-
lecular information, such as personal and familial genetic code,
will soon be included in his/her electronic medical record as
the most predictive clinical information for diagnostics, ther-
apeutics, and prognostics; and this could threaten the right of
privacy and confidentiality. Comprehensive integration of
bioinformatics and clinical informatics systems, then, will be
one of the primary challenges in the next decades.

Accomplishments of bioinformatics and the clinical relevance of
biochip informatics

The critical dependence of the success of the Human Ge-
nome Project on bioinformatics is just one example of the
remarkable accomplishments of bioinformatics. Other areas
where bioinformatics has been crucial include sequence align-
ment of DNA and protein, natural genetic variation, predic-
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tion of the structure and function of biological macromole-
cules, analysis of biomolecular interaction networks,
integration of heterogeneous biological databases, biomolecu-
lar knowledge representation, simulation of biological pro-
cesses, analysis of the data created by large-scale biological ex-
periments, and rational drug design.

Most researchers agree that the challenge now is to under-
stand all the data. The speed of data generation now exceeds
that of interpretation (i.e., more sequences than related publi-
cations in GenBank). This has become even more serious with
the introduction of biochips that measure the functional activ-
ities of genes and proteins. DNA microarrays are microscopic
slides containing a large number of cDNA (or oligonucleotide)
samples as fluorescently labeled probes to quantitatively mon-
itor the abundance of transcripts (or mRNAs). An image scan-
ner translates fluorescent intensities into a numerical matrix of
expression profiles.

Now that we have comprehensive maps of the human ge-
nome and transcriptome and since biochip technology can be
applied to cells or tissue samples without pulling genes or pro-
teins from them, we have an astounding technique to address
the comprehensive spatial and temporal genomic complexity
in living organisms under different experimental conditions.
Biochip informatics with comprehensive expression profiling
is clearly one of the most direct bridges from biomolecular
informatics to clinical medicine and the improvement of diag-
nostics, therapeutics, and prognostics.

Integrative biochip informatics in functional genomics and
proteomics

Biochip informatics: Basic data analysis

Because there are many sources of noise and systematic vari-
ability in microarray experiments,7,8 data normalization and
preprocessing are crucial in analysis. Normalization includes
those transformations that control systematic variabilities
within a chip or across multiple chips. The simplest way data
normalization can be done is by dividing or subtracting all
expression values by a representative value for the system or by
a linear transformation to a fixed mean (i.e., 0.0) and unit
variance (i.e., 1.0) (sometimes called “median polishing”).
However, the linear response between the true expression level
and measured fluorescent intensity may not be guaranteed,9,10

especially when dye biases depend on array spot intensity or
when multiple print tips are used in the microarray spotter.11

Data preprocessing includes those transformations that pre-
pare the data for the subsequent analysis. Scaling and filtering
are the major steps of data preprocessing. A low variation filter
to exclude genes that did not change significantly across exper-
iments has been successfully applied in many studies.12 Statis-
tical significance testing, such as the analysis of variance and
multiple comparisons, can also be used to filter data that show
no significant change across conditions when a sufficient num-
ber of repeated observations are available.

The importance of data visualization cannot be overempha-
sized. It is highly recommended to scatter-plot the data when-

ever possible. The most straightforward approach to microar-
ray data analysis is to find differentially expressed genes across
different experimental conditions.13,14 Standardized expres-
sion profiling, consistent database design, and streamlining the
experimental process management are all crucial,15,16 as are the
supervised and unsupervised machine-learning algorithms
that make sense of the mountains of genomic data. Here now is
a brief description of the various machine-learning approaches
to deciphering genomic data.

Biochip informatics: Functional clustering and machine-
learning approaches

A general question in many research areas is how to organize
observed data into meaningful structures. One common diffi-
culty in biochip data analysis is the very high dimensionality of
the data. The data projection method reduces high dimension-
ality and projects complex data structure onto a lower dimen-
sional space. Cluster analysis, by reducing dimensionality, cre-
ates hypothesized clusters and helps researchers infer
unknown functions of genes based on the assumption that a
group of genes with similar expression profiles may be func-
tionally associated.

Principal component analysis, a statistical approach to re-
duce dimensionality without losing significant information by
paying attention only to those dimensions that account for
large variance in the data, has been applied to microarray data
analysis.17,18 Mutidimensional scaling, a data projection
method originally developed in mathematical psychology,19

has also been shown to be a powerful tool in functional genom-
ics research.20

Cluster analysis is currently the most frequently used mul-
tivariate technique to analyze microarray data. Clusters can be
developed using a variety of similarity or distance metrics: Eu-
clidean distance, correlation coefficients, or mutual informa-
tion. Hierarchical tree clustering joins similar objects together
into successively larger clusters in a bottom-up manner (i.e.,
from the leaves to the root of the tree), by successively relaxing
the threshold of joining objects or sets (Fig. 1).21,22 The rele-
vance-networks approach takes the opposite strategy.23 It
starts with a completely connected graph with the vertices rep-
resenting each object and the edges representing a measure of
association, and then links are increasingly deleted to reveal
“naturally emerging” clusters at a certain threshold.

Partitional clustering algorithms, such as K-means analysis
and self-organizing maps,24 which minimize within-cluster
scatter or maximize between-cluster scatter, were shown to be
capable of finding meaningful clusters from functional
genomic data (Fig. 1).25,26 Creation of a hierarchical-tree struc-
ture in a top-down fashion (i.e., from the root to the leaves of
the tree) by successive “optimal” binary partitioning based on
graph theory27 and geometric space-partitioning principle28

has also been introduced.
The “optimal” partitioning problem (i.e., the best cluster-

ing) is fundamentally NP-hard and can be viewed as an opti-
mization problem. Most of the meta-heuristic algorithms,
such as simulated annealing and genetic algorithm29 and mod-
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el-based search,30 can all be applied to attain better under-
standing of the complex data structure of genomic-scale ex-
pression profiles. The reliability and quality measures of
clusters, as well as multilevel visualization for the evaluation of
clustering solutions, should be addressed.31,32

Integrative biochip informatics

Exploratory data analysis, such as clustering, is appropriate
when there is no a priori knowledge about the area of research.
Such a technique is known as unsupervised machine learning
in the artificial intelligence community. With increasing
knowledge of complex biological systems, supervised ma-
chine-learning techniques (or classification algorithms) are
also being increasingly introduced into functional genomics
with significant success.33,34

In addition to clustering and classifying expression profiles
(or unsupervised and supervised machine learning), system-
atic integration and streamlining of appropriate informatics
technologies can greatly enhance the productivity of func-
tional genomics research. For example, PubGene35 links gene
expression profiles to biomedical literature by combining gene
ontology and text mining techniques applied to the PubMed
database (http:/www.pubgene.org). A variety of meta-databas-
es36 and natural language processing techniques37 are being
applied to extract biomolecular interaction networks from
biomedical literature and factual databases. Linking this infor-
mation to genetic regulatory network and metabolic pathway
information like KEGG is undergoing vigorous research.
Structural sequence information can be used to greatly en-
hance functional understanding.38,39

At the Harvard Medical School–affiliated Children’s Hospi-
tal in Boston, we have also developed automatic annotation
machines for each microarray probe by integrating many of the
publicly available bioinformatics databases. An automated in-
ference engine to predict the functional annotation of genes
works together with all the streamlined biochip informatics
technologies, including basic data analysis, functional cluster-

ing, and supervised classification algorithms. The manage-
ment of integrated databases, as well as intelligent modules, is
becoming more important and challenging. We are currently
integrating these biochip informatics technologies into the ad-
vanced clinical information systems at Children’s Hospital.

Biomedical informatics: The emergence of new medicine

Large areas of medical research and biotechnological devel-
opment will be permanently transformed by the evolution of
high-throughput techniques and informatics. Biochip tech-
nology is one of the most readily applicable bioinformatics
innovations to biomedical research and clinical medicine. It
has been demonstrated that certain types of cancer can be clas-
sified by large-scale gene expression profiling.40 The capability
of new disease class discovery, as well as prognostic prediction,
has also been demonstrated.41 Drug discovery is being trans-
formed by developments in molecular cell biology and
bioinformatics.42

The spectacular capability of biochip technology to aid clin-
ical medicine is no wonder considering that, essentially, the
technology simultaneously performs tens of thousands of mo-
lecular marker studies with comprehensive sets of the biologi-
cally most informative molecules, genes, and proteins, in a very
systematic and quantitative fashion. By doing so, biochip tech-
nology uncovers the molecular basis of histopathological pro-
cesses, the fundamentals of modern diagnostics.

Bioinformatics will not replace experiments, but miniatur-
ization and automation of laboratory processes can streamline
and enable the discovery process to an extraordinary degree.
Integrating quality clinical information is crucial to achieve
real improvements in clinical diagnostics, therapeutics, and
prognostics. Thus bioinformatics is not merely a tool to assist
the discovery process; it becomes an integral part of discovery
and in this way will permanently transform the structure of our
biomedical knowledge bases.

The weaving of the horizontally integrated “omic” revolu-
tion of all biological building blocks (genome, transcriptome,
proteome, metabolome, and biome) with the vertical integra-
tion of biomedical informatics [molecular bioinformatics,
computational cell biology,43 computational physiology44

(neuroinformatics),45 digital anatomy46 (structural informat-
ics), chemoinformatics,47,48 clinical informatics,49 and public
health informatics50] has come of age. The new medicine will
be both molecularly informed and informatically empowered.
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