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Abstract

Motivation: Many have observed a nonlinear relationship
between the signal intensity and the transcript abundance in
microarray data. The first step in analyzing the data is to
normalize it properly, and this should include a correction for
the nonlinearity. The commonly used linear normalization
schemes do not address this problem.

Results: Nonlinearity is present in both cDNA and
oligonuclectide arrays, but we concentrate on the latter in
this paper. Across a set of chips, we identify those genes
whose within-chip ranks are relatively constant compared to
other genes of similar intensity. For each gene, we compute
the sum of the squares of the differences in its within-chip
ranks between every pair of chips as our statistic and we
select a small fraction of the genes with the minimal
changes in ranks at each intensity level. These genes are
most likely to be non-differentially expressed and are
subsequently used in the normalization procedure. This
method is a generalization of the rank-invariant
normalization (Li and Wong, 2001), using all available chips
rather than two at a time to gather more information, while
using the chip that is least likely to be affected by nonlinear
effects as the reference chip. The assumption in our
method is that there are at least a small number of non-
differentially expressed genes across the intensity range.
The normalized expression values can be substantially
different from the unnormalized values and may result in
altered down-stream analysis.
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Introduction

Simultaneous measurements of genome-wide gene
expression levels using DNA microarrays have become an
essential tool in many areas of biology and medicine in the
recent years (see, e.g., Collins(1999), and the review
articles following). This high-throughput method enables
researchers to obtain a global view of gene expression and
has brought about a shift in the way they approach many
biological problems. Microarrays have been used in many
contexts, for example, to identify different types of cancer
and the genes that characterize those types, e.g., Golub et
al. (1999); Alizadeh et al. (2000), and to study the cell-cycle
of the yeast and its response to various stimuli, e.g., DeRisi
etal. (1997); Cho et al. (1998).

As more attention is directed toward detecting finer
structure in the microarray data, a more careful analysis
becomes crucial. For example, some genes display such
dramatic changes in expression levels that any crude
analysis or even a visual inspection will reveal their
behavior. But to find genes with small fold changes
accurately, more sophisticated analysis is necessary. One
important part of such analysis is the first step of
normalization (Hoffmann et al., 2002). The expression
levels usually have a high level of systematic variations
and noise, caused, for instance, by inconsistencies in array
fabrication, staining, and scanning. The problem occurs
both on the individual gene level as well as on the array
level. Ideally, the normalization step should address all
sources of error to the extent possible, both within and
between arrays. Currently, most normalization, if
performed at all, is limited to a linear adjustment for each
array to account for different gain in the scanning process.

There are several methods for such between-array
normalization in the literature (Kepler et al., 2002;
Quackenbush, 2002; Kroll and WéIfl, 2002; Shmulevich
and Zhang, 2002). Their primary aim is to standardize the
“brightness” of chips to make expression levels across
arrays comparable. When the hybridized chips are
scanned to generate image files, different chips invariably
result in images of different brightness. Depending on the
data set, the mean expression level in each chip can vary
widely. It is not unusual to have a factor of two or greater
between some chips, as is the case with the data set we
examine in this paper. Whether the chips should have the
same brightness is not always clear. For some
experiments, the expected number of highly expressed



genes differs considerably between arrays, and the
brightness therefore should not be the same. However,
since variability coming from the hybridization and
scanning procedure seems to be larger than that from the
experiments themselves and it is difficult to estimate the
brightness a priori, some type of chip-to-chip normalization
is usually applied.

The simplest method is to set a trimmed mean or the
median of the distribution of the expression levels for each
chip to be the same as that of a reference chip. A typical
choice for the reference chip is the one with the median
brightness. Similar linear rescaling methods include
computing a scaling factor based on a linear regression fit
between each sample and a reference chip or a maximum
likehood estimation (Golub et al., 1999; Hartemink et al.,
2001). For certain purposes, setting the mean 0 and
variance to 1 can be a useful approach as well.

While linear rescaling is necessary, it is not sufficient. In
particular, on each chip, the relationship between the true
expression level and the signal intensity appears to be
nonlinear outside a certain dynamic range. This problem
has been observed and discussed by many researchers,
but most in the context of cDNAs (Workman et al., 2002;
Yang et al., 2002). Ramdas et al. (2001), for example,
examined this phenomenon experimentally, and concluded
that the sources of error are signal quenching associated
with excessive dye concentration for flourescently labeled
cDNAs on glass and nonlinear transformation by the
scanner for radioactively labeled cDNAs on nylon
membranes. Through a series of ‘spike-in’ hybridization
experiments involving prokaryotic transcripts in the
absence and presence of eukaryotic background, Chudin
et al. (2001) verified that a linear relationship between the
transcript abundance and signal is limited to a small range
in the number of transcripts (between 1 pM and 10 pM).
They argue that the linear range initially reported in lockhart
may have been inflated because it was obtained using a
custom array containing probe sets with more than 500
PM/MM probe pairs per gene (commercial arrays contain
16 or 20 probe pairs) and under specialized conditions
different from the routine operating settings.

In this paper, we propose an algorithm for dealing with
the nonlinearity. As shown in the next section, this
nonlinearity can be severe at times and misleading
expression levels can result if it is left uncorrected.

A more complete normalization step would involve
reducing other sources of errors; we address only the
nonlinearity aspect of the normalization process in this
work. We believe that a overall linear scaling and the
correction for nonlinearity when it is observed should be
the minimal components of normalization. Our focus in this
paper is on the Affymetrix GeneChip arrays, which are the
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most commonly used oligonucleotide arrays at present.
The issues that arise for these arrays are different and
often more complex than those for cDNA arrays. After an
illustration of the nonlinear effects, we describe a new
method in which within-chip ranks of genes across all chips
are used as a basis to identify non-differentially expressed
genes. Once we find these genes, we can use them to
standardize the expression levels across chips.

Methods

The data set we examine is from Golub et al. (1999). This
contains 38 arrays from leukemia patients with either ALL
(acute lymphoblastic leukemia) and AML (acute
myeloblastic leukemia) and possibly belonging to different
subtypes within each group. The data contain 7,129 genes.
We choose this set because it has been analyzed
extensively as a benchmark data set, especially in the
context of class prediction problems.

The basic limitations of the commonly used approaches
are that they are linear transformations on the data. The
more difficult part of a proper normalization is accounting
for the nonlinearity between true expression values and the
signal intensity. An example of this nonlinearity can be
seen in Fig. 1. In this scatterplot of all genes between two
arrays (4 and 20) from the leukemia data, at least one chip
exhibits nonlinear behavior.

In this case, both samples belong to the same category
of ALL and even the same subcategory of the B-cell type.
We expect that most genes in these arrays are non-
differentially expressed, falling on the line of slope one.
However, we observe that the genes do not follow a linear
relationship at all. It appears that a majority of the genes fall
below the regression line even though it seems unlikely
that their expression levels are all lower in sample 20.
Among the few data sets we have studied, this nonlinearity
appears frequently, sometimes in a serious manner as
shown in Fig. 1. This problem is mitigated when logarithm
is taken, but the effect is still clearly noticeable and should
be addressed. Why it happens in some chips and not in
others is not clear. Experimentally, one possible remedy is
to use external controls with spiked cDNAs. Hill et al.
(2001), for example, presents a normalization scheme
based on a common pool of biotin-labeled transcripts of
known concentration spiked into every hybridization. This
nonlinearity is observed for cDNA arrays as well. Yang et
al. (2001) propose one solution, fitting a local regression
line through the log-ratios of the two chips. The underlying
assumption for this normalization, however, is a rather
strong one, that there is roughly an equal number of up-
regulated and down-regulated genes at all intensity levels.

Beside the expression levels ( ‘average difference’ ),
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Fig. 1. An example of nonlinearity: samples 20 and 4 from the
leukemia data. Solid line is the line of slope 1; dotted line is the
linear regression line.
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Fig. 2.: Density of the P, M, and A calls. Present (P, solid line),
Marginal (M, dashed line) and Absent (A, dotted line) calls by the
Affymetrix software make up 29%, 1.6%, and 69.4% of the data,
respectively. The symmetry of the A call density around 0
indicates that the genes with A calls are likely to be noise.

Affymetrix data also provide another piece of useful
information. Every expression level is annotated with P
(Present), M (marginal), or A (absent) calls.

These confidence measures are derived based on the
same PM (perfect match) and MM (mismatch) probe sets,
usually 11-20 pairs, that are used to generate the
expression level for each gene. To understand what these
calls measure, we compute some basic statistics. We find
that only 29.0% of the data received P calls; M calls and A
calls take up 1.6% and 69.4%, respectively. To see how
these calls are related to the actual expression values, we
plot the density estimates of the expression values for each
type of call in Fig. 2. (We computed the density estimates
using a fast Fourier transform to convolve an empirical
distribution with a Gaussian kernel.) We find that the values
with the A calls are roughly symmetric around 0; in

contrast, the M and P calls have distributions that cover
substantially higher range.

This seems to indicate that those with A calls are likely
to be noise. It then seems reasonable to filter out at least
the 2,197 genes that have A calls in all 38 patients. In our
computations, we eliminated those genes with A calls in 34
or more patients, based on the histogram showing the
number of genes for each given number of A calls, leaving
3,609 out of 7,129 genes. 88% of the negative values are
eliminated from the data and almost all of the genes
eliminated have small magnitude below the nonlinearity
region in which we are interested.

Algorithm

Our proposed solution is a rank-based method. First, we
carry out a preliminary linear adjustment for overall
brightness. Since we have often observed outliers of
extremely high or extremely low (negative) values that
distort the overall mean, we recommend the trimmed mean
or the median for robustness. For trimmed mean, we have
found that trimming 2.5% from each end of the data is
sufficient. We then seek to identify some “non-
differentially” expressed genes that will be used to correct
for nonlinearity. Since any monotonic transformation will
preserve the within-chip ranks of genes, we base our
method on the ranks, and we look for genes whose ranks
do not fluctuate much relative to other genes of similar
signal intensity.
We use the following statistic for each gene k:

)4
Ri = (=),

ij=1

=]
where X is the rank of the expression value of the gene k
in chip i. This is the squared summation of the changes in
ranks for every pair of chips. The assumption is that if a
gene is non-differentially expressed across the samples,
their change in ranks should be relatively small. As we
discuss further in the next section, we choose the genes
whose statistic R« is small compared to other genes of
similar intensity.

The method we propose is an improvement over some
methods introduced previously. In Tseng et al. (2001) and
Li and Wong (2001), the within-chip rank for each gene
was compared between a reference chip and the chip
being normalized. If the difference between the ranks of a
gene in the two chips are below some threshold, then it is
assumed that those genes are non-differentially expressed.
A locally weighted regression with smoothing is then
performed using only these genes. One difficulty in the
method, however, is that the threshold for ranks does not



depend on the intensity values. When the gene is
expressed at a low level, a small perturbation can cause a
large change in the ranks due to the presence of many
similarly low-expressed genes. lterating the same
procedure on the set of non-differentially expressed genes,
as suggested by Tseng et al. (2001), is one way of
obtaining a more likely set of non-differentially expressed
genes, but our method deals with this in a more direct way.

The more serious issue is that the nonlinear effect we
observe is usually at the high intensity values, where we
often have fewer data points. Due to this sparsity of points,
it is difficult to determine which genes are likely to be non-
differentially expressed by the changes in ranks in that
range, and using a constant threshold is unreliable.
Because of this problem, Tseng et al. (2001) suggest
disregarding a certain number of points at the top or
bottom, as specified by a parameter, and then using a
linear regression based on the points in the middle to
extend the normalization curve to this range. This solution,
however, can give highly variable results depending on the
parameter, and it is not clear how to choose the parameter.

The improvement we suggest in this paper is a more
robust identification of the ‘non-differentially expressed’
genes. The fundamental difficulty in identifying non-
differentially expressed genes is that often there is not
enough information if the ranks on only two chips are used
for each normalization.

Therefore, any simple method must resort to making a
strong assumption, such as that the distribution of up-
regulated and down-regulated genes is the same at all
intensity ranges such as in Yang et al. (2001). We remedy
this problem by using the ranks of each gene in all chips.

(a)
5 e+06
4 e+06
3 e+06 E4&, T

S
2 e+06

1 e+06

o e e e R s S R

0 5000 10000 15000 20000 25000

0 e+00

Mean expression

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays 97

Our method takes those genes whose sum of changes in
ranks is small compared to others of similar median
expression levels. In that process, we are still making the
assumption that there are non-differentially expressed
genes throughout the whole range of expression levels, but
this seems to be the minimal assumption possible in the
absence of some external measure such as spiked-in
controls. Depending on the size or other characteristics of
the data set, the statistic R« can be modified. The current
form, for instance, imposes a heavy penalty for deviance
from the average rank; if the number of chips is very large
and one does not wish to disqualify a gene based on a
single chip, the statistic can be modified accordingly.

We note that in the presence of external information,
such as class labels in the case of the leukemia data, there
may be other ways of identifying differentially or non-
differentially expressed genes. But our method does not
require such information, which may not describe a correct
phenotype classification even when it is present. In the
Discussion section, we compare the result obtained using
the class labels to that given by our method as a way of
verifying our method.

Results

In Fig. 3, we plot R« for all genes k=1,...,n as a function of
each gene’ s median intensity among all chips. We see
that there is a sharp peak at a low intensity value close to
zero, indicating that the ranks may change by a large factor
at that range even when the changes in the expression
levels are small. It is clear that the threshold for R« should
depend on the intensity to account for the density of

log(R)

log(mean expression)

Fig. 3 (a) A plot of the mean expression level of each gene (across all samples) vs. the rank statistic, R.. There is a sharp peak near zero
because the high density of data points in that neighborhood results in large changes in ranks. To account for this effect, we need to find
those genes that have high R: relative to others at similar mean expression values. (b) We plot the same data in the log-log scale in order
to fit a smooth curve. The cut-off line is a smoother (LOESS) computed on the bottom 5% running quantile. The points below this line are
assumed to be non-differentially expressed.
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Fig. 4. (a) Before Normalization. Normalization curve for the two chips from Fig 1 (after linear normalization was applied to set
the trimmed means the same for all chips). The circled points have been identified as the non-differentially expressed genes
using the rank-based method using all 38 chips. A robust local linear regression is used to fit the curve through these points.

(b) After normalization. The fitted curve is now the line with slope 1 and data points have been adjusted accordingly.

neighboring points.

In order to find those likely to be non-differentially
expressed, we compute a running quantile of a given value
across the points in Fig. 3. Then we compute a robust local
regression to draw a smooth curve through the quantile
points. As the quantiles at the ends of the distribution are
biased, we extrapolate the curve in those cases. Because
of the extremely sharp peak in the distribution, we actually
convert both the x and y axes to a log scale; for negative
numbers, we take the logarithm of their negatives and fit
lines in such a way that the discontinuity near 0 can be
ignored (computing the correct curve is not important for
negative values.) In our example, we fit a smooth
regression curve through the lower 5 or 10% quantiles at
each mean intensity (in the log scale) and assume that the
points below the curve are non-differentially expressed.

After identifying the genes, we can use them to compute
the normalization curve. In Fig. 4, we show the chips
shown in Fig. 1 before and after normalization. We
identified 467 out of 7129 genes (6.5%) as most likely to be
non-differentially expressed. These are circled on the left in
Fig. 4. The solid curve is then fit through these genes using
a locally weighted regression (Cleveland, 1979). That
regression curve is then assumed to be the straight line
that would have resulted if the experimental procedures
had not introduced nonlinear effects. On the right, we
transform that curve to be the straight line with slope 1 and
adjust the other points accordingly. After the transforma-
tion, the picture is nearly symmetric.

Once we have obtained the subset of the non-
differentially expressed genes, we can normalize all the
chips against the same reference chip using the same
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Fig. 5. Normalization curves computed for each of the chips vs.
the reference chip. Most curves fall near y=x but few have a
noticeable nonlinear effect.

subset. In picking the reference chip, we should be careful
not to pick the one with a severe nonlinearity problem. If
such a chip were chosen as the reference sample, then all
the curves would appear to have the nonlinearity problem
even when that is not the case. A simple solution to this
problem is to compute the linear correlation coefficient for
all pairwise combinations and pick the chip with the largest
sum of correlation coefficients with the rest of the samples.
This procedure will identify a chip with little or no
nonlinearity.

In Fig. 5, we plot the normalization curves of all chips (y-
axis) against the reference chip (Chip 4). We see that most
lines fall near the y=x line, but a few appear to be
problematic. Since the nonlinear effect we discuss here
seems to be present in many data sets, we suggest that
one compute all normalization curves as in Fig. 5 for a



given data set to determine if it is a problem.

Discussion

Our emphasis in this work has been to identify genes that
are non-differentially expressed so that we can make more
consistent comparisons across microarrays. But, we can
also use Fig. 3 to find differentially expressed genes. It is
already clear from Fig. 3 by visual inspection that some
genes are outliers. We can, for example, mark those genes
whose R: statistic is in the top 1% compared to those with
similar mean expression values, and examine them for
biological significance.

In general, it is difficult to determine whether we have
correctly identified certain genes as differentially or non-
differentially expressed. For the type of data sets with class
labels (ALL vs. AML), however, one can compare the
result with that obtained from another method, such as the
t-test (parametric) or the Wilcoxon (nonparametric) test.
Strictly speaking, this is not a correct comparison, since
either test presumes that the data set has been properly
normalized. However, comparing the results this way gives
some sense of the similarities between such a test and our
method. In Fig. 6, we plot the running mean of the R:
statistics against the t-statistics. We see that there is a
strong correlation (-.879 and .794, respectively, for
negative and positive values of t-statistics), although the
variance of the individual genes around the running means
are high. This is evidence that the rank statistic is capturing
an important feature of the data. We also note that our
subsequent use of the R. statistic is in the context of its
neighbors in intensity values, not in place of the t-statistic.

This method can therefore be viewed as an exploratory
tool in a limited way, as it does not require any phenotype
information such as the disease labels when identifying

Rk
1. E+06
8. E+05
6.E+05 *

4. E+05 +

2. E+05

0. E+00 -

Rank-Based Nonlinear Normalization of Oligonucleotide Arrays 99

either differentially or non-differentially expressed genes. In
many cases, phenotype information may be available but
inaccurate, or not available at all. It may not be clear how
the information should be used even when available. For
example, if there are multiple characteristics such as
gender and age, we can discover interesting genes without
having to divide them into all possible categories. The
labels may also be continuous, making it difficult to put
them into discrete categories.

In this paper, we have applied the normalization scheme
at the level of the expression measures that have been
derived from the probe-level data. Accurate and robust
methods for reducing the probe-level information to the
expression measures is under development by many
researchers. The method described here can be applied at
the probe level, at the expense of increased computational
cost. While many studies using microarrays have resulted
in significant progress in our understanding of various
biological processes, it often has been the result of the
prominent features in the data. As we look for less
apparent features and construct a finer picture of the
underlying mechanisms, having a “clean” data set will be
increasingly important. For example, various clustering
algorithms have been applied in the analysis in order to
identify samples or experiments with similar characteristics
or co-expressed genes.

Hierarchical clustering in particular has been a popular
method. However, it is well-known that many clustering
techniques such as hierarchical clustering are sensitive to
small perturbations in the data set.

The validity of the results are therefore contingent on
having good quality data. We have proposed one possible
solution to address the nonlinearity between the transcript
abundance and the signal intensity in oligonucleotide
arrays. We identify genes based on their rank changes on
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Fig. 6 t-statistic vs. R.. When we know the division of the chips into two classes, we can see whether the t-statistics correspond with R..
We plot the running mean of R« as a function of t-statistic. Correlation coefficients are -.879 and .794 respectively for the negative and

positive t-statistics.
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all chips, rather than two at a time, and with the assumption
that at least a very small proportion is non-differentially
expressed at every intensity level. Until microarray
technology can be improved, more such post-experiment
corrections will need to be developed and applied.
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